Subsonic Civil Transport Aircraft for 2035: An Industry-NASA-University Collaborative Enterprise

MIT / Aurora / Pratt & Whitney

Technology Lead: Chief Engineer: Principal Investigator: Alejandra Uranga Mark Drela Edward Greitzer auranga@mit.edu drela@mit.edu greitzer@mit.edu

AIAA SciTech 2015 January 5, 2015

Summary

- MIT, Aurora Flight Sciences, Pratt & Whitney, NASA working together to develop concepts for a 2035 subsonic transport aircraft
- ► Experiments, computations, and analysis to climb the TRL ladder
 - ► Large scale powered experiments in NASA Langley 14×22 foot Subsonic Wind Tunnel
 - New engine concepts to power this aircraft
- Achieved project objectives
 - BLI benefit assessment
 - Engine concepts
 - Technology development
- \blacktriangleright BLI benefit quantified to give $\sim 8\%$ power saving for a realistic configuration, the D8
- Proof-of-concept of BLI for civil transports

Outline

1 Introduction

- 2 The D8 Aircraft Concept
- 3 BLI Benefit
- 4 High Efficiency, High OPR Small Cores
- **5** Summary and Conclusions

University-Industry-NASA Collaboration

University

- Independent examination of concepts
- Education of next generation of engineers

Industry

- Aircraft and engine design, development
- Product knowledge

NASA

- Bridging TRL gap between university and industry
- National facilities for experimental assessment of ideas, computational examination of flow fields

Collboration within and between organizations

- ▶ Phase 1: ~30 people including 5 faculty, 6 students
- ▶ Phase 2: ~>30 people including 2 faculty, 3 staff, 9 students

Program driven by ideas and technical discussions \Rightarrow changes in "legacy" beliefs

NASA Sets Aggressive Technology Goals

In 2008, NASA put forward an N+3 request for proposals:

What would it take to develop an aircraft for the 2025-2035 timeframe which could meet the future civil transport challenges?

CORNERS OF THE TRADE SPACE	N+1 (2015)*** Generation Conventional Tube and Wing (relative to B737/CFM56)	N+2 (2020)*** Generation Unconventional Hybrid Wing Body (relative to 8777/GE90)	N+3 (2025)*** Generation Advanced Aircraft Concepts (relative to user defined reference)
Noise	- 32 dB (cum below Stage 4)	- 42 dB (cum below Stage 4)	-71 dB (cum below Stage 4)
LTO NOx Emissions (below CAEP 6)	-60%	-75%	better than -75%
Performance: Aircraft Fuel Burn	-33%**	-40%**	hottor than 70%
Performance: Field Length	-33%	-50%	Detter trian -70%
Source 222			exploit metro-plex* concepts

MIT N+3 Phase 2

Fuel Burn and NASA Goals

E. Greitzer et al. 2010, NASA CR 2010-216794

MIT N+3 Phase 2

Industry-University Team Members

Jeff Chambers (Aurora) Austin DiOrio*+ Mark Drela Alex Espitia* Sydney Giblin (Aurora)⁺ Adam Grasch*+ Edward Greitzer David Hall* Jeremy Hollman (Aurora) Arthur Huang David Kordonowy (Aurora) Jennie Leith Graduate Students

+ Non-current

Bob Liebeck Michael Lieu* Wesley Lord (P&W) Roedolph Opperman (Aurora)* Sho Sato*+ Nina Siu* Ben Smith (Aurora) Gabriel Suciu (P&W) Choon Tan Neil Titchener Alejandra Uranga Flise van Dam* Plus 13 undergratuate students

Plus others at P&W and Aurora

The D8 Aircraft Concept

E. Greitzer et al. 2010, NASA CR 2010-216794 A. Uranga et al. 2014, AIAA 2014-0906

B737-800/A320 class

- 180 PAX, 3,000 nm range
- Double-bubble lifting fuselage with pi-tail
- ► Two aft, flush-mounted engines ingest ~ 40% of fuselage BL
- Cruise Mach 0.72
- -37% fuel with current tech (configuration)
- -66% fuel with advanced tech (2025-2035)

No "magic bullet"

System Impact of BLI

BLI benefits

- Aerodynamic (direct) benefits
 - Reduced jet and wake dissipation
 - Reduced nacelle wetted area
- System-level (secondary) benefits
 - Reduced engine weight
 - Reduced nacelle weight
 - Reduced vertical tail size
 - Compounding from reduced overall weight

"Morphing" sequence: B737-800 \mapsto D8

- Features of D8 introduced one at a time
- Sequence of conceptual aircraft designs, optimized at each step

E. Greitzer et al. 2010, NASA CR 2010-216794

M. Drela 2011, AIAA 2011-3970

A. Uranga et al. 2014, AIAA 2014-0906

(TASOPT)

Morphing Sequence: $B737-800 \mapsto D8.2 \mapsto D8.6$

Phase 2 Research Thrusts

Task 1: airframe-propulsion system integration

- ► Define/design aft section of D8: integration of engines into fuselage
- Quantify aerodynamic benefit of boundary layer ingestion (BLI)
- Propulsor performance with distortion from BLI
- Phenomena, expected (and unexpected) behavior
- Combined experimental and computational approach

Phase 2 Research Thrusts

How

- Direct, back-to-back comparison of non-BLI and BLI configurations (podded) (integrated)
- Turbomachinery characterization

Tools

- Analytical analysis (1D power balance)
- Experiments at NASA Langley 14×22 wind tunnel and MIT tunnels
- Computational studies
- Close collaboration with NASA

Goals of Phase 2, Task 1

1 Define/design aft-section of D8

Photos NASA/George Homich

Goals of Phase 2, Task 1

2 Quantify aerodynamic benefit of BLI for D8-type configuration

- 8.4% with equal nozzle area
- 10.5% with equal mass flow
- 3 Develop methodology for studying aircraft configurations with BLI
- 4 Define technology road map for the D8: next steps to increase TRL

BLI Analysis

- Ambiguous decomposition into drag and thrust (airframe) (propulsion system)
- Use power balance method instead of force accounting
- BLI reduces wasted KE in combined jet+wake

M. Drela 2009, AIAA Journal 47(7)

MIT N+3 Phase 2

BLI Benefit

Metric: Mechanical flow power, P_K , transmitted to the flow by propulsors

BLI benefit =
$$\frac{P_{K_{\text{non-BLI}}} - P_{K_{\text{non-BLI}}}}{P_{K_{\text{non-BLI}}}}$$

 $\approx 8\% \text{ to } 10\%$

Photo NASA/George Homich

Photo NASA/George Homich

Survey Propulsor Inlet and Outlet

Rotating rake system in wind tunnel experiments

Importance of Experimental Results

 $\blacktriangleright \text{ Wind tunnel experiments} \rightarrow \text{proof-of-concept}$

- Assessment of D8 configuration
 - Aerodynamic performance
 - Computations crucial in data reduction and interpretation
- First back-to-back assessment of BLI vs non-BLI
- BLI benefit results applicable to full-size aircraft when using mechanical flow power as performance metric computations

Outline

1 Introduction

- 2 The D8 Aircraft Concept
- 3 BLI Benefit
- 4 High Efficiency, High OPR Small Cores
- **5** Summary and Conclusions

N+3 D8 Engine Requirements

- \blacktriangleright D8.6 N+3 conceptual aircraft, engine bypass ratio (BPR) \sim 20
- Low drag (low thrust), high pressure ratio imply decrease in compressor exit corrected flow, flow area, to 1.5 lbm/s (CFM 56 has 7 lbm/s)

$$rac{\dot{m}\sqrt{T_t}}{A
ho_t} = f(M_{ ext{exit}}) \quad ext{or} \quad ext{corrected flow} = A_{ ext{exit}}f(M_{ ext{exit}})$$

▶ Implies blade heights < 0.4" - with **conventional** architecture

High Efficiency, High OPR Small Core Compressors

What mechanisms limit small core compressor efficiency?

- Low Reynolds number
- Tip gaps relative to chord
- Manufacturing accuracy
- How can we mitigate effects of size on efficiency?
- What are mechanical constraints for engine layout and rotor dynamics?
 - ► Big fan small core

Task 2: high efficiency, high pressure ratio small core engines

- Limits to performance
- Technology opportunities for performance enhancement
- Innovative propulsion system architectures

Cores Shrink As Efficiency Improves [Epstein 2013]

High Efficiency, High OPR, Small Core Challenges

- Disk burst "1-in-20 rule"
- Close-coupled exhausts
- Propulsive efficiency with BLI
- Performance of small core turbomachinery
- Engine architecture and structural integration

Accomplishments 1/2

 Determined BLI benefit in first back-to-back BLI vs non-BLI comparison

 $10.5\pm0.7\%$ at equal mass flow $8.4\pm0.7\%$ at equal nozzle area

- Scaling for experimental BLI quantification
- BLI benefit quantification and uncertainty assessment
- No show-stoppers for D8 concept
- Determined propulsor inlet distortion for BLI aircraft
- ► Observed fan efficiency loss to be much less than total BLI benefit (1-2% versus 15%)

Accomplishments 2/2

- Defined approaches to mitigate effects of distortion on turbomachinery performance
 - Tradeoffs different than for "conventional" fan operation
- Identified mechanisms and drivers for small core, high efficiency, high OPR compressor technology
- Carried out conceptual design of small core engine
 - Architecture enables flow path with decreased non-dimensional tip clearance
 - Architecture enables meeting of 1-in-20 rule

Acknowledgments

Funding

NASA Fundamental Aeronautics Program, Fixed Wing Project under Cooperative Agreement NNX11AB35A

Thanks to

Staff at NASA Langley 14 \times 22 Foot Subsonic Wind Tunnel

NASA Fixed Wing Project management

N. Cumpsty, Y. Dong, A. Epstein, E. Gallagher, A. Murphy, J. Sabnis, G. Tillman, H. Youngren