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Summary

» MIT, Aurora Flight Sciences, Pratt & Whitney, NASA working together to
develop concepts for a 2035 subsonic transport aircraft

> Experiments, computations, and analysis to climb the TRL ladder
» Large scale powered experiments in NASA Langley 14x22 foot
Subsonic Wind Tunnel
» New engine concepts to power this aircraft
> Achieved project objectives
» BLI benefit assessment
» Engine concepts
» Technology development
> BLI benefit quantified to give ~ 8% power saving for a realistic
configuration, the D8
» Proof-of-concept of BLI for civil transports
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University-Industry-NASA Collaboration
University
> Independent examination of concepts

» Education of next generation of engineers

Industry
» Aircraft and engine design, development
» Product knowledge
NASA
» Bridging TRL gap between university and industry

» National facilities for experimental assessment of ideas, computational examination

of flow fields

Collboration within and between organizations
» Phase 1: ~30 people including 5 faculty, 6 students
> Phase 2: ~>30 people including 2 faculty, 3 staff, 9 students
Program driven by ideas and technical discussions = changes in “legacy” beliefs
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NASA Sets Aggressive Technology Goals

In 2008, NASA put forward an N+3 request for proposals:

What would it take to develop an aircraft for the 2025-2035
timeframe which could meet the future civil transport challenges?
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Fuel Burn and NASA Goals
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The D8 Aircraft Concept
» B737-800/A320 class

MIT N+3 D8.2
» 180 PAX, 3,000 nm range

b

» Double-bubble lifting fuselage
with pi-tail

ing

» Two aft, flush-mounted engines
ingest ~ 40% of fuselage BL

\
n » Cruise Mach 0.72

=

—37% fuel with current tech
(configuration)

—66% fuel with advanced tech
(2025-2035)

No “magic bullet”
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System Impact of BLI

BLI benefits
» Aerodynamic (direct) benefits
» Reduced jet and wake dissipation
» Reduced nacelle wetted area
» System-level (secondary) benefits

Reduced engine weight

Reduced nacelle weight

Reduced vertical tail size

Compounding from reduced overall weight

v

v vy

“Morphing” sequence: B737-800 — D8

» Features of D8 introduced one at a time

» Sequence of conceptual aircraft designs, optimized at each step
(TASOPT)
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Morphing Sequence: B737-800 — D8.2 — D8.6
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Phase 2 Research Thrusts

Task 1: airframe-propulsion system integration

v

Define/design aft section of D8: integration of engines into fuselage

v

Quantify aerodynamic benefit of boundary layer ingestion (BLI)

v

Propulsor performance with distortion from BLI

v

Phenomena, expected (and unexpected) behavior

v

Combined experimental and computational approach
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Phase 2 Research Thrusts

How

» Direct, back-to-back comparison
of non-BLI and BLI configurations
(podded) (integrated)

» Turbomachinery characterization

Tools
» Analytical analysis (1D power balance)

» Experiments at NASA Langley
14x22 wind tunnel
and MIT tunnels

v

Computational studies

v

Close collaboration with NASA
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Goals of Phase 2, Task 1

Define/design aft-section of D8

"

MIT N+3 Phase 2 AIAA SciTech 2015 12 /29

Photos NASA /George Homich



Goals of Phase 2, Task 1

Quantify aerodynamic benefit of BLI for D8-type configuration

e 8.4% with equal nozzle area
e 10.5% with equal mass flow

Develop methodology for studying aircraft configurations with BLI

Define technology road map for the D8: next steps to increase TRL
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BLI Analysis

» Ambiguous decomposition into  drag and thrust
(airframe) (propulsion system)

» Use power balance method instead of force accounting

» BLI reduces wasted KE in combined jet+wake

Zero Net Wasted
Momentum Kinetic Energy
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BLI Benefit

non-BLI
(Podded)

Metric: Mechanical flow power, Pk, transmitted to the flow by propulsors

P - P
BLI benefit = Knon-BLI Knon-BLI
Pk

non-BLI

~ 8% to 10%
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Survey Propulsor Inlet and Outlet

Rotating rake system
in wind tunnel experiments

Total Pressure

Exit Rake
Total Pressure

O Inlet Rake
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Integrated Propulsor Ingested Flow

Experiments
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Importance of Experimental Results

v

Wind tunnel experiments — proof-of-concept

v

Assessment of D8 configuration

» Aerodynamic performance
» Computations crucial in data reduction and interpretation

v

First back-to-back assessment of BLI vs non-BLI

v

BLI benefit results applicable to full-size aircraft when using
mechanical flow power as performance metric computations
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High Efficiency, High OPR Small Cores



N+3 D8 Engine Requirements

» D8.6 N+3 conceptual aircraft, engine bypass ratio (BPR) ~ 20

» Low drag (low thrust), high pressure ratio imply decrease in
compressor exit corrected flow, flow area, to 1.5 Ibm/s (CFM 56 has

7 Ibm/s)

my/Te
Apt

= f(Mexit) or corrected flow = Aeyitf (Mexit)

» Implies blade heights < 0.4" — with conventional architecture
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High Efficiency, High OPR Small Core Compressors

» What mechanisms limit small core compressor efficiency?

» Low Reynolds number
» Tip gaps relative to chord
» Manufacturing accuracy

» How can we mitigate effects of size on efficiency?
» What are mechanical constraints for engine layout and rotor

dynamics?

> Blg fan — small core
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Phase 2 Research Thrusts

Task 2: high efficiency, high pressure ratio small core engines
» Limits to performance
» Technology opportunities for performance enhancement

» Innovative propulsion system architectures
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Cores Shrink As Efficiency Improves [epstein 2013]
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High Efficiency, High OPR, Small Core Challenges

Disk burst “1-in-20 rule”

v

v

Close-coupled exhausts

\4

Propulsive efficiency with BLI

v

Performance of small core turbomachinery

v

Engine architecture and structural integration

MIT N+3 Phase 2 AIAA SciTech 2015 26 / 29



Accomplishments 1/2

» Determined BLI benefit in first back-to-back BLI vs non-BLI
comparison
10.5+0.7% at equal mass flow
8.4+0.7% at equal nozzle area

» Scaling for experimental BLI quantification
» BLI benefit quantification and uncertainty assessment
» No show-stoppers for D8 concept

» Determined propulsor inlet distortion for BLI aircraft

» Observed fan efficiency loss to be much less than total BLI benefit
(1-2% versus 15%)
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Accomplishments 2/2

» Defined approaches to mitigate effects of distortion on
turbomachinery performance

» Tradeoffs different than for “conventional” fan operation

» Identified mechanisms and drivers for small core, high efficiency, high
OPR compressor technology

» Carried out conceptual design of small core engine
» Architecture enables flow path with decreased non-dimensional tip
clearance
» Architecture enables meeting of 1-in-20 rule
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