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Message

I Closer integration of propulsion system and airframe provides new
opportunities to increase fuel efficiency of commercial aircraft

I Boundary layer ingestion (BLI)

I Novel configurations

I System optimization (airframe, engine, operations)

I Flow power and dissipation provide useful metrics for integrated
configurations

I Aerodynamic merit of BLI demonstrated in back-to-back comparison
of BLI vs non-BLI: 8–10% power reduction at cruise
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MIT N+3 Project

Aircraft and Technology Concepts for an N+3 Subsonic Transport

I Phase 1 (2008 – 2010): development of double-bubble D8 aircraft

I Phase 2 (2010 – 2015): benefit of airframe-engine integration

30+ people including 2 faculty, 3 staff, 9 grads, 13 undergrads

I Phase 3 (2015 – present): performance vs. speed, transonic OML
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The D8 Aircraft Concept

MIT N+3  D8.2
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I B737-800/A320 class

I 180 PAX, 3,000 nm range

I Double-bubble lifting fuselage
with pi-tail

I Two aft, flush-mounted engines
ingest ∼ 40% of fuselage BL

I Cruise Mach 0.72

−36% fuel with current tech

−65% fuel with advanced tech
(2025-2035)

No “magic bullet”
E. Greitzer et al. 2010, NASA CR 2010-216794
A. Uranga et al. 2014, AIAA 2014-0906



Boundary Layer Ingestion (BLI)
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I BLI reduces wasted KE in combined jet+wake (mixing losses)

I Ambiguous decomposition into drag and thrust
(airframe) (propulsion)

⇒ consider power balance instead of force accounting
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M. Drela 2009, AIAA Journal 47(7)



BLI Benefit

BLI benefit (aerodynamic)

Savings in power required for given net stream-wise force
with BLI engines relative to non-BLI engines

Power metric

Mechanical flow power transmitted to the flow by the propulsors

PK ≡ ©
∫∫

(pt − pt∞) V · n̂ dS = ṁ
∆pt
ρ

I Independent of propulsor characteristics

I Surrogate for fuel burn: ṁfuel =
PK

hfuel ηth ηf
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Obtaining PK

Direct Measurement: Integrating propulsor inlet and outlet flows

Indirect Measurement: Use electrical power to motor, PE

PK = ηf︸︷︷︸
fan

efficiency

× ηm︸︷︷︸
motor

efficiency

× PE

︸ ︷︷ ︸
shaft power

Numerical Simulations: Use CFD to predict flow on full airframe with engine
model, from which force and power can be extracted by integration
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PK =

∫∫
exit

(pt − pt∞) V · n̂ dS

−
∫∫

inlet

(pt − pt∞) V · n̂ dS

inlet exit



Non-BLI (Podded) Configuration
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BLI (Integrated) Configuration
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BLI (Integrated) Configuration
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Back-to-Back Comparison
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Non-BLI
(Podded)

BLI
(Integrated)

BLI Benefit: Power Ratio ≡ power required with BLI

power required without BLI
=

PK

P ′
K

Propulsive Efficiency:

ηp ≡ net propulsive power to vehicle

power added to flow
≡ PK − Φjet

PK



Experiments

NASA LaRC 14×22 tunnel (2 entries)

I 1:11 powered model, 13.4 ft (4 m) span
V∞ = 70 mph, Rec = 570k, M∞ = 0.09

84 mph 680k 0.11

I Non-BLI and BLI configurations

MIT 1×1 tunnel

I Turbomachinery characterization
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Experiments

Non-BLI and BLI configurations share a large part of hardware

I Common wings

I Common front 80% of fuselage

I Common propulsor units plug into interchangeable tails
(fan stage, motor, center-body, housing, nozzle, electronics)
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BLI Benefit: Less Power to Produce Given Force
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Data taken at 70mph and 84mph during both 2013 and 2014 NASA Langley entries;

12–17 repeat runs at each condition
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BLI Benefit
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Bases for Comparison

Given a non-BLI propulsor with some jet velocity, mass flow, nozzle area,
how do you choose an “equivalent” BLI propulsor for comparison?

smaller propulsor

Anozzle
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propulsor
power
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BLI Benefit and Propulsive Efficiency

Benefit primarily due to higher propulsive efficiency

Additional 1% gain from reduced body dissipation
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BLI Benefit: Not Unique

Vary propulsive efficiency by changing nozzle area
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System Impact of BLI

BLI benefits
I Aerodynamic (direct) benefits

I Reduced jet and wake dissipation
I Reduced nacelle wetted area

I System-level (secondary) benefits
I Reduced engine weight
I Reduced nacelle weight
I Reduced vertical tail size
I Compounding from reduced overall weight

“Morphing” sequence: B737-800 7→ D8

I Features of D8 introduced one at a time

I Sequence of conceptual aircraft designs, optimized at each step
(TASOPT)
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E. Greitzer et al. 2010, NASA CR 2010-216794
M. Drela 2011, AIAA 2011-3970
A. Uranga et al. 2014, AIAA 2014-0906



Morphing Sequence: B737-800 7→ D8.2 7→ D8.6
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Sensitivities to Conceptual Models (Preliminary Phase 3)
I Assessing uncertainty on TASOPT’s conceptual predictions

I Mission: 180 PAX, 3 000 nm, Mach 0.80 cruise

I Compare overall (system-level) benefit of the D8 relative to a
conventional tube-and-wing aircraft with same technology, speed, etc.

I Introduce changes in engine models, and re-assess D8’s benefit

0 20% 40% 60% 80% 100%

All Changes

+200K Turbine Metal

Geared Weight Model

+5% Fan Efficiency

-20% Nacelle Drag

-10% Engine Weight

Baseline 2010 Eng Tech 25.5% D8 benefit ± 2%

25.6%

24.8%

25.5%

26.5%

24.5%

23.9%
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Relative Benefit of D8 (Preliminary, Phase 3)
Benefit of the D8 relative to conventional tube-and-wing configuration
is insensitive to changes in engine models

0 1 2 3 4 5 6 7

M∞ = 0.80
2035 Eng Tech

M∞ = 0.80
2010 Eng Tech

M∞ = 0.72
2010 Eng Tech 21–23% benefit

23–25% benefit

21–23% benefit

Tube-and-wing D8

PFEI (kJ/kg·km)

Penalty: - 2% ηf
+ 10% eng weight

Payload Fuel Energy Intensity
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Effect of Cruise Speed (Preliminary, Phase 3)

0 1 2 3 4 5 6 7

D8

Tube-and-Wing

PFEI (kJ/kg·km)

+ 9%

+ 6%

M∞ = 0.72 M∞ = 0.80

23% benefit
at M∞ = 0.72

25% benefit
at M∞ = 0.8

I Cost of flying faster is significant
I Cost for D8 is smaller than for tube-and-wing

I Larger nacelles in tube-and-wing aircraft cause higher penalties
(weight, drag) from larger engines
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High-Efficiency, High-OPR, Small Cores

Pratt & Whitney – Lord et al., AIAA 2015-0071

SAE INTERNATIONAL 

“Engine Architecture for High Efficiency at Small Core Size” 
Lord et al., AIAA 2015-0071 -  Pratt & Whitney 

42 
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Summary

I BLI has potential for large fuel reduction for transport aircraft

I Carried out first back-to-back comparison of BLI vs non-BLI

I Demonstrated aerodynamic merit of BLI for realistic configuration

8.6% at equal nozzle area ±1.8% at 95% confidence

10.3% at equal mass flow

I Proof-of-concept of BLI for fuel reduction of commercial transports

I System-level benefit of BLI estimated to be above 20%
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A View of the Future?

I There have been 50+ years of developing non-BLI systems
we now need to learn to use BLI

I Opened up new possibilities for advanced transport aircraft

I Identified new class of important research problems
I Aircraft configuration and airframes
I Propulsion system and integration
I Component technologies
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