Quantification of the Aerodynamic Benefit of Boundary Layer Ingestion

A University-Industry-NASA Collaboration

Technology Lead:	Alejandra Uranga	auranga@usc.edu
Chief Engineer:	Mark Drela	drela@mit.edu
Principal Investigator:	Edward Greitzer	greitzer@mit.edu

Green Aviation Technical Interchange Meeting NASA Langley Research Center

March 29 - 31, 2016

USC

Message

- Closer integration of propulsion system and airframe provides new opportunities to increase fuel efficiency of commercial aircraft
 - Boundary layer ingestion (BLI)
 - Novel configurations
 - System optimization (airframe, engine, operations)
- Flow power and dissipation provide useful metrics for integrated configurations
- Aerodynamic merit of BLI demonstrated in back-to-back comparison of BLI vs non-BLI: 8–10% power reduction at cruise

Outline

1 Introduction

- 2 Boundary Layer Ingestion (BLI)
- 3 Aerodynamic BLI Benefit
- 4 System-Level Benefits
- **5** Summary and Conclusions

MIT N+3 Project

Aircraft and Technology Concepts for an N+3 Subsonic Transport

- ▶ Phase 1 (2008-2010): development of *double-bubble* D8 aircraft
- ▶ Phase 2 (2010-2015): benefit of airframe-engine integration

30+ people including 2 faculty, 3 staff, 9 grads, 13 undergrads

▶ Phase 3 (2015 – present): performance vs. speed, transonic OML

The D8 Aircraft Concept

E. Greitzer et al. 2010, NASA CR 2010-216794 A. Uranga et al. 2014, AIAA 2014-0906

2016 Green Aviation TIM

- B737-800/A320 class
- 180 PAX, 3,000 nm range
- Double-bubble lifting fuselage with pi-tail
- ► Two aft, flush-mounted engines ingest ~ 40% of fuselage BL
- Cruise Mach 0.72
- -36% fuel with current tech -65% fuel with advanced tech
 - (2025-2035)

No "magic bullet"

Boundary Layer Ingestion (BLI)

- BLI reduces wasted KE in combined jet+wake (mixing losses)
- Ambiguous decomposition into drag and thrust (airframe) (propulsion)
 - \Rightarrow consider power balance instead of force accounting

```
M. Drela 2009, AIAA Journal 47(7)
```

BLI Benefit

BLI benefit (aerodynamic)

Savings in power required for given net stream-wise force with BLI engines relative to non-BLI engines

Power metric

Mechanical flow power transmitted to the flow by the propulsors

$$P_{K} \equiv \oint (p_{t} - p_{t_{\infty}}) \mathbf{V} \cdot \hat{n} \, dS = \dot{m} \, \frac{\overline{\Delta p_{t}}}{\rho}$$

Independent of propulsor characteristics

• Surrogate for fuel burn:
$$\dot{m}_{\text{fuel}} = \frac{P_K}{h_{\text{fuel}} \eta_{th} \eta_f}$$

Obtaining P_K

Direct Measurement: Integrating propulsor inlet and outlet flows

$$P_{\mathcal{K}} = \iint_{\text{exit}} (p_t - p_{t_{\infty}}) \mathbf{V} \cdot \hat{n} \, dS$$
$$- \iint_{\text{inlet}} (p_t - p_{t_{\infty}}) \mathbf{V} \cdot \hat{n} \, dS$$

Indirect Measurement: Use electrical power to motor, PE

Numerical Simulations: Use CFD to predict flow on full airframe with engine model, from which force and power can be extracted by integration

Photo NASA/George Homich

Photo NASA/George Homich

BLI (Integrated) Configuration

AVIATION WE

CHINA'S MOON PLAN

Outdoing Saturn V

& SPACE TECHNOLOGY

PUSHING THE BOUNDARY

Singapore Airlines Bets on India

Photos NASA/George Homich

Eurocopter Offshores

To the U.S.

Back-to-Back Comparison

BLI Benefit: Power Ratio $\equiv \frac{\text{power required with BLI}}{\text{power required without BLI}} = \frac{P_K}{P'_K}$

Propulsive Efficiency:

$$\eta_{P} \equiv \frac{\text{net propulsive power to vehicle}}{\text{power added to flow}} \equiv \frac{P_{K} - \Phi_{\text{jet}}}{P_{K}}$$

Experiments

NASA LaRC 14×22 tunnel (2 entries)

- ► 1:11 powered model, 13.4 ft (4 m) span $V_{\infty} = 70$ mph, $Re_c = 570$ k, $M_{\infty} = 0.09$ 84 mph 680k 0.11
- Non-BLI and BLI configurations

 $\mathsf{MIT}\ 1{\times}1\ \mathsf{tunnel}$

Turbomachinery characterization

Experiments

Non-BLI and BLI configurations share a large part of hardware

 Common propulsor units plug into interchangeable tails (fan stage, motor, center-body, housing, nozzle, electronics)

Outline

1 Introduction

2 Boundary Layer Ingestion (BLI)

- 3 Aerodynamic BLI Benefit
- 4 System-Level Benefits
- **5** Summary and Conclusions

BLI Benefit: Less Power to Produce Given Force

Data taken at 70 mph and 84 mph during both 2013 and 2014 NASA Langley entries; 12–17 repeat runs at each condition

2016 Green Aviation TIM

Bases for Comparison

Given a non-BLI propulsor with some jet velocity, mass flow, nozzle area, how do you choose an "equivalent" BLI propulsor for comparison?

BLI Benefit and Propulsive Efficiency

Benefit primarily due to higher propulsive efficiency Additional 1% gain from reduced body dissipation

BLI Benefit: Not Unique

Vary propulsive efficiency by changing nozzle area

Outline

1 Introduction

2 Boundary Layer Ingestion (BLI)

- 3 Aerodynamic BLI Benefit
- 4 System-Level Benefits
- **5** Summary and Conclusions

System Impact of BLI

BLI benefits

- Aerodynamic (direct) benefits
 - Reduced jet and wake dissipation
 - Reduced nacelle wetted area
- System-level (secondary) benefits
 - Reduced engine weight
 - Reduced nacelle weight
 - Reduced vertical tail size
 - Compounding from reduced overall weight

"Morphing" sequence: B737-800 \mapsto D8

- Features of D8 introduced one at a time
- Sequence of conceptual aircraft designs, optimized at each step

(TASOPT)

E. Greitzer et al. 2010, NASA CR 2010-216794 M. Drela 2011, AIAA 2011-3970 A. Uranga et al. 2014, AIAA 2014-0906

Morphing Sequence: $B737-800 \mapsto D8.2 \mapsto D8.6$

Sensitivities to Conceptual Models (Preliminary Phase 3)

- Assessing uncertainty on TASOPT's conceptual predictions
 - Mission: 180 PAX, 3000 nm, Mach 0.80 cruise
 - Compare overall (system-level) benefit of the D8 relative to a conventional tube-and-wing aircraft with same technology, speed, etc.
 - Introduce changes in engine models, and re-assess D8's benefit

Relative Benefit of D8 (Preliminary, Phase 3)

Benefit of the D8 relative to conventional tube-and-wing configuration is insensitive to changes in engine models

Effect of Cruise Speed (Preliminary, Phase 3)

- Cost of flying faster is significant
- Cost for D8 is smaller than for tube-and-wing
 - Larger nacelles in tube-and-wing aircraft cause higher penalties (weight, drag) from larger engines

High-Efficiency, High-OPR, Small Cores

Pratt & Whitney - Lord et al., AIAA 2015-0071

Outline

1 Introduction

2 Boundary Layer Ingestion (BLI)

- **3** Aerodynamic BLI Benefit
- **4** System-Level Benefits
- **5** Summary and Conclusions

Summary

- ► BLI has potential for large fuel reduction for transport aircraft
- Carried out first back-to-back comparison of BLI vs non-BLI
- Demonstrated aerodynamic merit of BLI for realistic configuration
 8.6% at equal nozzle area ±1.8% at 95% confidence
 10.3% at equal mass flow
- ► Proof-of-concept of BLI for fuel reduction of commercial transports
- System-level benefit of BLI estimated to be above 20%

A View of the Future?

- ► There have been 50+ years of developing non-BLI systems we now need to learn to use BLI
- Opened up new possibilities for advanced transport aircraft
- Identified new class of important research problems
 - Aircraft configuration and airframes
 - Propulsion system and integration
 - Component technologies

Acknowledgments

- Funding from NASA under Cooperative Agreements NNX08AW63A, NNX11AB35A, NNX15AM91A
- ► Team members at MIT, Aurora, Pratt & Whitney, NASA
- NASA Project management
- ▶ Staff at NASA Langley 14×22 Foot Subsonic Wind Tunnel
- N. Cumpsty, Y. Dong, A. Epstein, E. Gallagher, A. Murphy, J. Sabnis, G. Tillman, H. Youngren

Contact Information:	Alejandra Uranga, Ph.D. Assistant Professor and Provost Fellow Aerospace & Mechanical Engineering University of Southern California
	Email: auranga@usc.edu Phone: (213) 821-0846