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Abstract

The present work predicts the formation of laminar separation bubbles at low Reynolds
numbers and the related transition to turbulence. In addition to being one of the first
Implicit Large Eddy Simulation studies using a high-order Discontinuous Galerkin
method, unique attention is given to the boundary layer characteristics thus contribut-
ing to the understanding of low Reynolds number flows and the related separation-
induced transition. Furthermore, a preliminary transition model suitable for such
flows is introduced and its underlying concept proven valid.

The flow around an SD7003 infinite wing at an angle of attack of 4◦ is first con-
sidered at Reynolds numbers of 10,000, 22,000, and 60,000. At the lowest Reynolds
number studied, the flow remains laminar and two dimensional with a periodic vor-
tex shedding. For higher Reynolds numbers, the flow is highly unsteady and exhibits
a separation bubble on the upper surface over which flow transitions to turbulence.
Tollmien-Schlichting waves are observed in the boundary layer upstream of separation,
and their streamwise amplification factor shows they are responsible for transition.

The major effects of cross-flow on low Reynolds number transition are studied by
comparing the flows over the same infinite wing at different sweep angles. Project-
ing the results along a common two-dimensional equivalent direction, it is established
that the cross-flow cannot be decoupled from the streamwise evolution at intermediate
sweep angles due to strong non-linear interactions that take place after the laminar
boundary layer separates. Hence, for separation-induced transition at low Reynolds
numbers, it is not possible to treat streamwise and cross-flow instabilities indepen-
dently for wings with sweep angles between about 10◦ and 40◦, and predicting the
mixed transition cannot be reduced to treating the disturbances of each component
separately. An important presumption to be adopted in the study of unsteady flows
for MAVs and animal locomotion is thus that the type of transition (TS dominated,
cross-flow dominated, or mixed) is a priori unknown as soon as the flow is slightly
misaligned with the wing’s chord.
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to uncertainty
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“I am an old man now, and when I die and go to heaven there are two matters on

which I hope for enlightenment. One is quantum electrodynamics, and the other is

the turbulent motion of fluids. And about the former I am rather optimistic.”

Horace Lamb, 1932 address to the British Association for the Advancement of Science
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ŝ2 Local boundary layer cross-flow unit vector, ŝ2 = ŝ1 × n̂
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Chapter 1

Introduction

Interest in autonomous Unmanned Air Vehicles (UAVs), particularly Micro-Air Ve-

hicles (MAVs1), has grown considerably in the last decades stimulated by the minia-

turization of technology and the advancements in micro systems. The use of MAVs

is especially attractive for law-enforcement and military applications, such as recon-

naissance, surveillance and rescue missions.

The recent years have also seen a growing interest in animal locomotion. The

physics of fish swimming, birds flying, and insects flapping has been studied both by

engineers and by biologists, and the trend is to go beyond qualitative explanations by

seeking a more quantitative understanding of the phenomena involved. As for MAVs,

the flow falls in the so-called low Reynolds number regime, with Reynolds numbers

between 10,000 and 100,000 (Shyy, 2008). Animal locomotion is interesting from the

point of view of design of small flying vehicles, and also from a fundamental physics

and engineering perspective. Design strategies can be inspired by nature, even when

the aim is not to reproduce the exact flight of an animal. Furthermore, the field of

fundamental fluid mechanics can benefit from the study of the complex flows involved.

1.1 Motivation

At the low Reynolds numbers encountered in MAVs and animal locomotion, the

boundary layer over the body remains laminar over large distances and is thus prone

to separation, a phenomenon which is detrimental to aerodynamic performance. Com-

putational design strategies for low Reynolds number flying and swimming vehicles,

1An MAV was formally defined by the Defense Advanced Research Projects Agency (DARPA)
as any flying vehicle whose dimensions are no larger than 15cm. In general, they weigh a couple
hundred grams.
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as well as for model airplane and glider design, hence rely on the accurate prediction

of separation. Furthermore separation often induces transition to turbulence, which

in turn can induce re-attachment. Separation, transition, and reattachment can take

place over a significantly short distance, producing a separation bubble which can

fluctuate in size and position. Thus, the prediction of separation and transition is of

crucial importance in low Reynolds number flows.

This is very different from large-airplane aerodynamics in which the boundary

layer transitions very close to the leading edge, and hence the location of predicted

transition has little effect on the overall performance of the airfoil or wing under

consideration. However, the computational drag prediction of high Reynolds number

flows for wing and airplane design has been found to fail significantly for configu-

rations where flow separation is present, even in small, limited regions. This has

been observed during the Drag Prediction Workshop series (Lalin et al., 2005; Vass-

berg et al., 2008) and similar efforts. Thus, the ability to predict separation and

the associated transition is fundamental for the advancement of Computational Fluid

Dynamics (CFD) techniques, for both low and high Reynolds number applications.

There are widely accepted ways of predicting fully laminar and fully turbulent

flows that are commonly used for design purposes, in particular methods that rely

on the Reynolds-Averaged Navier-Stokes (RANS) equations and associated turbu-

lence closure models. On the other hand, there is no single reliable, computationally

affordable, way of simulating transition. While methods such as Direct Numerical

Simulation (DNS) and Large Eddy Simulation (LES) are capable of accurately pre-

dicting transition, they are still too expensive to be used for design purposes and will

remain so for still several decades (Spalart, 2009). Thus, a general, and practical,

way of predicting transition in the RANS context is much needed.

Motivated both by newer, low Reynolds number design requirements and by the

limitations of classical aerodynamic predictions, the research community is now look-

ing for reliable ways of predicting transition. Not limited to external flow problems,

there has also been significant interest from the turbo-machinery community.

As pointed out by Abu-Ghannam and Shaw (1980), transition to turbulence is

a complex physical process influenced by a variety of factors, including the flow

Reynolds and Mach numbers, free-stream turbulence, pressure gradient, and surface

characteristics (roughness, curvature, temperature). It is thus particularly difficult to

model transition for a wide variety of flows.

From another point of view, the prediction of low Reynolds number flows around

MAVs and vehicles inspired by fish swimming, or the flapping flight of bats, represents
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a significant challenge for CFD. The flows encountered are highly unstable, with

laminar, transitional, and turbulent regions. Furthermore, transition can occur not

only along boundary layers, but also along free shear layers as when separation is

present.

1.2 Approach

An in-depth investigation of the low Reynolds number, low Mach number flow around

a rectangular, infinite, SD7003 wing at an angle of attack of 4◦ is carried out. The

SD7003 profile is chosen since it is characterized by the formation of a laminar sep-

aration bubble along its upper surface which is present across a range of Reynolds

numbers and angles of attack, and has been the subject of several studies.

First, the flow at Reynolds numbers of 10,000, 22,000, and 60,000 is studied with

a free-stream velocity vector that lies in the plane of the SD7003 profile. Thus, the

free-stream is perpendicular to the wing’s leading-edge line and an un-swept wing is

simulated. The lowest velocity regime represents a flow that remains laminar along

the wing, while the two latter are characterized by transition along a laminar sepa-

ration bubble. Except at Re = 22, 000, extensive experimental data and numerical

simulations are available for comparison. In the second part, a span-wise velocity

component is added to the free-stream velocity in order to simulate a wing at differ-

ent sweep angles and study transition in the presence of cross-flow instabilities.

In all cases, both the general flow features (force time histories, vortex shedding,

average pressure and skin friction) and the transition process are examined. Fur-

thermore, the evolution of boundary layer disturbances and their amplification is

obtained from both classical stability analysis by tracking velocity fluctuations, and

as predicted by a transition model that we propose and which is based on a transport

equation for the amplification factor N of disturbances.

The accurate simulation of transition to turbulence requires low numerical dis-

persion and dissipation. Thus, the use of a high-order Discontinuous Galerkin (DG)

finite element method is used since it combines high accuracy with unstructured grids

for the geometric flexibility required by practical applications.

Furthermore, several studies have shown that transition can be predicted by means

of Large Eddy Simulations (LES) (see for instance Zang et al., 1993). We follow the

Implicit LES (ILES) approach in which the unresolved small eddies are accounted

for by means of numerical dissipation: no subgrid-scale model is employed and the

full (unfiltered) compressible Navier-Stokes equations are solved. This approach has
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been successfully used by Visbal and collaborators (Galbraith and Visbal, 2008; Vis-

bal et al., 2009; Garmann and Visbal, 2009; Visbal, 2009) using a sixth-order compact

difference method for the simulation of the flow around an SD7003 airfoil. To the au-

thor’s knowledge, together with preliminary results presented earlier (Uranga et al.,

2009), the present investigation is the first attempt at using a DG method for un-

steady, three-dimensional Large Eddy Simulations.

1.3 Scope

As motivated previously, the present work focuses on two important aspects related

to low Reynolds number flows which require further understanding, namely the tran-

sition mechanism and related problem of transition prediction, and the feasibility of

numerical simulations to predict the flows involved.

With respect to the latter, the high-order DG method is used and expanded for the

simulation of transitional and turbulent flows, and the feasibility of an ILES approach

for flow simulations using a DG method is confirmed. Not all numerical methods

provide the adequate dissipation (see Appendix C and Grinstein et al., 2007b), and

the ILES approach needs to be evaluated given the intrinsic numerical dissipation of

the particular DG method employed. Thus, a major question addressed in the present

work is whether DG can provide a reliable (i.e. accurate and robust) test-base for

transition modeling calibration and testing.

We also evaluate the accuracy that can be obtained using a number of degrees-

of-freedom that is at least close to acceptable for design computations, in particular

whether the boundary layer can be resolved with sufficient accuracy for stability

analysis. In other words, to be suitable for use in design, the simulation technique

should not require the resolution of the details of the flow phenomena involved in

transition, and yet be able to predict the location of transition with sufficient accuracy.

This is assessed by closely looking at the transition process and the required spatial

and temporal resolutions.

The second major objective of the present work is to advance towards the devel-

opment of a transition modeling approach suitable for design. The knowledge of the

fundamental flow physics encountered at these regimes is still quite limited, and hence

the development of a transition prediction method for low Reynolds number flows is

necessarily accompanied by a study and an understanding of the fundamental flow

phenomena involved, such as the formation of laminar separation bubbles and the

mechanisms involved in the transition to turbulence. Thus, the present work includes
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a study of the transition which takes place along a laminar separation bubble in low

Reynolds number flows. In particular, we investigate the effects of the cross-flow

present over swept wings in this regime which are for the most part unknown.

The aim is not to fully understand every aspect of separation-induced transition,

but to know enough to determine which features play the most prominent role and

hence need to be properly incorporated in any successful transition model. Once

that is done, we evaluate the applicability of a transition model for unsteady, three-

dimensional flow proposed by M. Drela2 which uses a transport equation for the linear

amplification factor N of disturbances and amounts to a generalization of the two-

dimensional, steady procedure used in XFOIL (Drela, 2002). It is designed to model

the amplification of Tollmien-Schlichting (TS) waves, and as such assumes they are

the dominant mechanism of transition—which the present work establishes to be the

case in separation-induced transition at low Reynolds numbers over unswept wings.

The N evolution is evaluated a posteriori using a time-average of the unsteady ILES

simulations as the mean base flow.

The TS transition model does not directly take into account the growth of cross-

flow instabilities and hence considering the flow for several wing sweep angles is done

in order to eventually devise simple modifications to the model equation that would

take into account the influence of cross-flow on transition. Modifying the transition

model equation is however outside the scope of the present research, as is the actual

coupling with a RANS transition model.

The proposed transition equation is compatible with turbulence models for RANS

closure commonly used today via either a trip term, or via a limiting function for the

turbulent production terms. However, its implementation in an unstructured code

constitutes a challenge in itself since it relies on boundary layer integral parameters

which need to be computed. We determine which thresholds are appropriate (e.g. to

define the boundary layer edge), and which boundary layer resolution and integration

accuracy is needed.

In what follows, the reader is first introduced to the background considerations

relevant to the present study while a detailed summary of the works reported in the

published literature is provided. The methodology chapter describes the computa-

tional methods employed including how the boundary layer and transition process are

studied, and gives the form of the transition model equation proposed. The next two

chapters discuss the results for an un-swept wing at three different Reynolds numbers,

followed by those for wings with varying sweep angles at Reynolds 60,000. Finally,

2personal communication, fall 2006
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a summary of results and contributions are presented together with avenues for fur-

ther work. Additional considerations which might be of interest to some readers are

provided in the appendices.
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Chapter 2

Background

This chapter is devoted to providing a summary of the published works that are

related to our problem and to the research objectives. The aim is also to give an

overview of the relevant physical and numerical aspects of the present research. This

knowledge constitutes the basis for the understanding of the present work’s motiva-

tion, challenges, and contributions.

We start by giving a description of transition and of flow stability theory, before

looking at the specifics of transition in laminar separation bubbles and the effects of

cross-flow. This is followed by a review of the different transition prediction techniques

that have been reported in the literature. Some fundamental aspects of the Large

Eddy Simulation approach are then reviewed, before describing work that has been

done in turbulence and transition prediction using Discontinuous Galerkin methods.

Finally, an overview of published research results on the low Reynolds number flow

around SD7003 airfoils and wings is provided.

2.1 The Physics of Transition to Turbulence

Transition to turbulence significantly modifies the major characteristics and behavior

of a flow. For instance, turbulent flows generate larger wall friction than laminar

flows due to the increased momentum transfer and dissipation. On the other hand, a

laminar boundary layer has a much greater tendency to separate in the presence of an

adverse pressure gradient than its turbulent counterpart. Thus, a very important—

and mostly unresolved—problem in fluid mechanics is that of transition. Under what

circumstances does a laminar flow become turbulent? Where, or at what moment,

does transition take place? What physical mechanisms are responsible for transition?
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Throughout this work, we are careful to differentiate between the critical Reynolds

number and the transition Reynolds number. The latter refers to the location where

the flow becomes turbulent, which is what is generally measured in experiments; it

corresponds to what we call here transition location. The former on the other hand

refers to the location where the flow first becomes unstable, and is usually determined

by a stability analysis. The difference between these two values is the transition length

which can vary significantly between flows.

2.1.1 Stages of Transition

The textbooks by Schlichting and Gersten (2000) and by White (1991) describe in

detail the stages of transition along a flat plate boundary layer in low free-stream

turbulence, as illustrated in Figure 2-1. The first stage starts at the critical Reynolds

number and corresponds to the development of unstable two-dimensional Tollmien-

Schlichting (TS) waves which travel in the mean flow direction and are amplified

as they move downstream. The onset and development of these waves is the ob-

ject of primary stability theories. Further downstream, the TS waves become three-

dimensional and the flow starts showing span-wise variations. This is accompanied

by the formation of vortical structures, called Λ structures, whose development is

studied by secondary stability theory. The development of three-dimensional waves

is followed by the appearance of turbulent spots, and starting at this location the flow

becomes alternatively laminar and turbulent, a phenomena called intermittency. The

turbulent spots convect downstream, disperse, coalesce, and eventually encompass all

of the boundary layer at the transition Reynolds number: the boundary layer is then

fully turbulent.

The above description corresponds to the process of natural transition, which is

most commonly observed in external flows over smooth walls and with low free-stream

turbulence. Another type of boundary layer transition is known as bypass transition,

and is usually observed in internal gas turbine flows that are characterized by high

levels of free-stream turbulence (turbulence intensity of 0.5% or more). In this case,

the linear instability region is by-passed without the appearance of linearly growing

TS waves, and transition is achieved as soon as the local Reynolds number is high

enough to allow turbulent flow.

Among the factors that most strongly influence transition are the free-stream

turbulence, the wall roughness, and the pressure gradient. The presence of either

free-stream turbulence or wall roughness introduces perturbations into the boundary
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Figure 2-1: Illustration of the flat plate boundary layer transition process [Figure
from White (1991)]

layer and hence tends to induce transition. Certain disturbances are more efficient

than others at triggering transition, a phenomena known as boundary layer receptivity

(Saric et al., 2002).

In the presence of a favorable pressure gradient (pressure decrease), the flow is

accelerated and the transition location moves downstream. On the other hand, an

adverse pressure gradient (pressure increase) decelerates the flow and destabilizes the

boundary layer thus inducing transition at lower Reynolds numbers. If the pressure

gradient is large enough (e.g. as measured relative to the boundary layer inertia), the

boundary layer can separate before transition takes place. This can occur for instance

at low Reynolds numbers, and is discussed in Section 2.3; in this case transition is

very rapid, with little or no turbulent spot formation (LeBlanc et al., 1989).

2.1.2 Transition in Three-Dimensional Boundary Layers

The flow around a swept wing is an example of flow in which transition can take place

along a three-dimensional boundary layer. In addition to the transition process cor-

responding to the growth of TS waves in essentially two-dimensional flows, transition

in three-dimensional cases can be triggered by cross-flow (CF) instabilities. The CF

waves travel in a direction which is close to orthogonal to the streamwise direction,

i.e. almost span-wise. A phenomena often encountered is the appearance of standing

perturbation vortices, also called zero-Hertz modes due to the fact that they have
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zero angular frequency and hence are stationary. Section 2.4 provides more details.

Thus, transition can occur due to the growth of TS wave, CF instabilities, or a

combination of both known as mixed transition. Both TS-type and CF-type tran-

sitions can be modeled by tracking the amplification factor of the disturbances (see

summary of previous works in Section 2.5.2), but the non-linear interaction of TS and

CF instabilities at the later stages of growth close to transition is not well understood.

Furthermore, very little is known about the effects of cross-flow on transition at low

Reynolds numbers, a deficiency the present works starts to address.

2.2 Mathematical Description: Stability Theory

It is important to be aware that stability theory does not try to establish when the

flow actually becomes turbulent. Rather, it aims at determining whether small per-

turbations would grow, which is a necessary condition for transition. The discussion

in this section is mainly based on the books by Schlichting and Gersten (2000); White

(1991); Drazin and Reed (1981); and Cebeci (2004).

The first attempts at applying stability considerations to fluid flows date back to

the late eighteen hundreds and the theoretical studies of Kelvin (1871) and Rayleigh

(1879, 1880), at which time stability methods were already used to assess the stability

of dynamical systems of rigid bodies. The idea is to add a small perturbation into a

known solution of the equations of motion, neglect products of small perturbations to

obtain a linear system, assume the perturbations can be expressed as a linear superpo-

sition of independent time-evolving modes of the form est, and calculate the complex

variable s from the linearized equations. The system is then unstable when the real

part of s of any mode is positive indicating exponential growth of an infinitesimal

disturbance. On the other hand, if all the disturbances die away (s having a negative

real part), the system is considered stable.

Note that the small perturbation assumption of stability theory, by which quadratic

terms in the perturbation quantities can be neglected and hence the governing equa-

tions linearized, is justified by the fact that the first perturbations that appear on a

(perfectly) laminar flow are necessarily small.

2.2.1 Primary (Linear) Stability Theory

In primary stability theory, the starting point is a basic flow which is laminar and sat-

isfies the governing Navier-Stokes equations. A small, two-dimensional perturbation
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is superimposed on this basic flow, and the governing equations linearized.

It is also assumed that the basic flow is steady and parallel, i.e. the only non-

vanishing velocity component U (in the direction x) is only a function of the transverse

direction (e.g. the direction n normal to the wall). The parallel flow assumption is

exact for fully developed flows inside ducts of constant cross-section, and a good

approximation for boundary layers in which x-derivatives are negligible compared to

n-derivatives.

In order to satisfy the continuity equation, a perturbation stream function ψ(x, n, t)

is defined such that the flow disturbances u′, v′ introduced into the basic laminar flow

U(n) are given by

u′ =
∂ψ

∂n
, v′ = −∂ψ

∂x
. (2.1)

The perturbations are assumed to be the superposition of independent eigenmodes of

the form

ψ(x, n, t) = φ(n) ei(αx−ωt) , (2.2)

in which φ(n) is the eigenfunction, α or ω the eigenvalue, and the exponent term the

amplitude function. Here we choose to approach the problem from the point of view

of temporal stability to determine whether the small disturbances grow or decay in

time. Thus, the parameter α is real and the perturbation wavelength of the mode is

λ = 2π/α. The complex parameter ω = ωr + i ωi describes the frequency ωr and the

amplification factor ωi of the mode. Thus, the amplitude of the temporal mode is eωit

and the perturbation wave is damped (stable) when ωi < 0 and amplified (unstable)

when ωi > 0. It is convenient to introduce a third parameter, c = ω/α = cr + i ci,

which characterizes the phase velocity cr in the x-direction.

This whole procedure (detailed in Appendix B) yields the Orr-Sommerfeld equa-

tion which can be non-dimensionalized by taking the boundary layer edge velocity

Ue as the characteristic velocity, and some measure of the boundary layer thickness

d (usually the displacement thickness δ∗) as the characteristic length, to give

(U − c)
(
φ′′ − α2φ

)
− U ′′φ = − i

αRe

(
φ′′′′ − 2α2φ′′ + α4φ

)
, (2.3)

where Re = Ue d / ν is the characteristic Reynolds number and the prime indicates

derivatives with respect to n.

The corresponding boundary conditions for a boundary layer are given by the no-

slip condition at the wall located at n = 0, and the vanishing of disturbances infinitely

far from the wall. Both of these conditions translate into vanishing perturbation
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velocities, that is

φ = 0 , φ′ = 0 at n = 0 , n→∞ . (2.4)

The Orr-Sommerfeld equation (2.3) was derived by Orr (1907) and Sommerfeld

(1908) and is the starting point of the stability theory of laminar parallel flows.

Together with its homogeneous boundary conditions it forms an eigenvalue problem,

with parameters α, c, Re, and eigenfunctions φ(n). Solving the stability problem

corresponds to finding the solutions of this equation and thus determining whether

the amplification factor ωi is positive (unstable flow) or negative (stable flow).

Temporal versus Spatial Stability

The Orr-Sommerfeld equation can be solved for the temporal growth (in temporal

stability theory) to determine ω, or for the spatial growth (spatial stability theory) to

determine α. In the former, α is taken to be real and ω is complex, and the amplitude

of the disturbances grows in time as eωit (i.e. instability when ωi > 0). In the latter,

ω is taken to be real and α complex, and the disturbance amplitude varies with x as

e−αix (i.e. instability when αi < 0).

Gaster (1962) compared the amplification rates for disturbances growing in time to

disturbances growing spatially for the same wave number, and showed that for small

amplification rates both spatially-growing and temporally-growing frequencies are

equal to a high order approximation. In other words, the temporally- and spatially-

evolving disturbances are equivalent, and one can choose either approach to study

the stability of linear modes.

Inviscid Stability

When the Reynolds number becomes infinitely large, the flow is inviscid and the

Orr-Sommerfeld equation (2.3) simplifies to the second order equation

(U − c)
(
φ′′ − α2φ

)
− U ′′φ = 0 , (2.5)

or equivalently, for c 6= U ,

φ′′ −
(

U ′′

U − c + α2

)
φ = 0 , (2.6)

which is known as the Rayleigh equation as a reference to Lord Rayleigh who first

studied it (Rayleigh, 1879, 1880), and can be solved analytically for some simple
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U(n) profiles. For an external flow, the boundary conditions impose v′ = 0 at the

wall (non-penetration) and the unperturbed far-field, i.e. φ = 0 at n = 0 and n→∞.

Here, we limit ourselves to giving some fundamental conclusions of inviscid sta-

bility that are useful in the understanding of the cases studied in the present work.

For a detailed discussion of inviscid stability, see Drazin and Reed (1981).

In an inviscid flow, the velocity profile must have an inflection point for it to

be unstable (Rayleigh, 1879, 1880): this necessary condition for inviscid stability is

known as the point of inflection criterion. In the presence of an adverse pressure

gradient, a boundary layer profile has an inflection point and can be unstable, while

it is inviscidly stable in favorable pressure gradients (Schlichting and Gersten, 2000).

At this point it is important to note that stability is closely related to the curvature

of a velocity profile. Therefore, in order to make correct stability predictions, both

the velocity profile U(n) and its curvature U ′′ = d2U/dn2 must be known accurately.

Similarly, free shear layers between parallel streams can be inviscidly unstable:

this is known as Kelvin-Helmholtz instability—named after Helmholtz (1868) who

first observed the phenomena and after Kelvin (1871) who solved the associated sta-

bility problem. It is observed in the presence of two streams with same velocity and

different densities when the fluid on top has higher density than the fluid below, or

at the interface of two streams of same density but different velocities as occurs for

instance in viscous flows with a vorticity gradient (see Drazin and Reed (1981) for

the mathematical derivations). Of particular interest to us is when this instability

occurs after a boundary layer separates.

Viscous Stability

While the study of the stability of inviscid flows led early to significant results,

progress in understanding viscous flows was much slower. For instance, it was as-

sumed since Rayleigh’s work and for a long time that any velocity profile without an

inflection point was stable (a legacy of the point of inflection criterion), and viscous

cases such as channel flow and boundary layers in favorable pressure gradients were

deemed stable. It was only 40 years later that Prandtl (1921) showed that viscos-

ity could have a destabilizing effect, and the analytical study of the Orr-Sommerfeld

equation was performed shortly after by his students Tollmien (1929) and Schlicht-

ing (1933). It took yet more than another decade for the results of stability theory

to be verified experimentally, when H.L. Dryden and his co-workers at the National

Bureau of Standards were able to observe TS waves. Numerical solutions of the Orr-
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Sommerfeld equation were obtained only in the 1960s and 1970s (Kurtz and Candrall,

1962; Kaplan, 1964; Wazzan et al., 1968; Jordinson, 1970, 1971).

The main result of viscous stability analysis is that viscosity can have both a

stabilizing effect (when viscosity damps disturbances) and a destabilizing one (as in

the case of a boundary layer with no inflection point whose velocity profile is inviscidly

stable but viscously unstable). Thus

• the flow is stable when it is very viscous, i.e. below the critical Reynolds

number Recrit: the dominant effect of viscosity is then energy dissipation and

perturbations are damped;

• certain perturbations are unstable at intermediate Reynolds numbers: viscosity

has a destabilizing effect which can be seen as the result of momentum diffusion;

• the flow can be stable above a certain Reynolds number; it tends to be governed

by the Rayleigh equation and is stable if the velocity profile has no inflection.

The boundary of the region where instabilities are amplified is known as the neutral

curve and corresponds to ci = 0 in temporal stability theory. The neutral curves for

different frequencies, ωi, are plotted in a αδ∗ versus Reynolds number Reδ∗ plane as

shown in Figure 2-2, and are also referred to as thumb curves due to their shape. The

spatial stability theory leads to similarly-shapped curves in the ων/U2
e –Reδ∗ plane

for different values of αi.

Outside of the region delimited by a neutral curve, the flow is stable and dis-

turbances are damped. At large Reynolds numbers, laminar velocity profiles with

Figure 2-2: Illustration of neutral stability curves: neutral stability defines a range
of Reynolds numbers and wave lengths over which instability may occur. Profile (a)
has a point of inflection and hence is subject to inviscid instability at large Reynolds
number. Profile (b) has no point of inflection and hence is stable in the limit of large
Reynolds number. [Figure from Schlichting and Gersten (2000)]
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no point of inflection (inviscidly stable) correspond to a closed neutral curve as il-

lustrated in Figure 2-2. The critical Reynolds number corresponds to the left-most

point of the neutral curve, and below it no disturbances are amplified. The growth

rates of unstable disturbances are given by the points enclosed by the neutral curve,

with maximum growth corresponding to the inner-most point inside the curve.

It is important to note that the Orr-Sommerfeld equation is particularly sensitive

to the numerical procedure employed, which explains why it could only be solved

computationally in the 1960s. As explained by Schlichting and Gersten (2000), this is

due to the fact that the solution φ(n) varies strongly with n both near the wall (viscous

part) and near the critical layer where U − c = 0 (due to the inviscid contribution

and the singular point of the Rayleigh equation). Another way to see this is by

looking directly at the Orr-Sommerfeld equation (2.3): the coefficient of highest order

derivative φ′′′′ is the small factor 1/Re and hence φ′′′′ variations are hard to resolve.

Similar complications arise when trying to solve the equation analytically.

For boundary layers, stability computations are complicated even further by the

fact that one of the boundaries lies at infinity. Indeed, the basic boundary layer flow

U(n) is not an exact solution of the Navier-Stokes equations since variations in the

free-stream x-direction are not exactly null.

2.2.2 Secondary Stability Theory

Primary stability theory deals with the initial, linear growth of instabilities in a

laminar basic flow. Secondary stability theory aims at predicting the onset of three-

dimensional perturbations, starting from the perturbed, two-dimensional, flow ob-

tained from primary stability. In other words, the solution of the primary stability

calculations is taken as the basic flow over which three-dimensional perturbations are

superimposed, the growth of which is studied through a procedure similar to that fol-

lowed in primary stability analysis. Details can be found in the works by Schlichting

and Gersten (2000); Drazin and Reed (1981); Cebeci (2004); Herbert (1988).

Secondary stability theory is important for determining where the flow transi-

tions. However, transition prediction can usually be solely based on primary stability

considerations: the actual transition location can be correlated to the initial linear

disturbance growth since the non-linear breakdown is very fast compared to the linear

growth. In a laminar separation bubble over an airfoil, the non-linear growth occurs

over a very short distance of the order of a couple of percents of the chord (LeBlanc

et al., 1989), and is thus not relevant for the problems considered here.
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2.3 Transition in Laminar Separation Bubbles

As explained previously, laminar boundary layers tend to separate under adverse

pressure gradient conditions much easier than turbulent boundary layer which carry

more energy and momentum. As a result, the formation of a laminar separation

bubble (LSB)—illustrated in Figure 2-3—is a phenomena often encountered in low

Reynolds number flows. Studies of the transition to turbulence in conjunction with an

LSB (Alam and Sandham, 2000; Lang et al., 2004) provide the scenario summarized

by Hain et al. (2009) as follows:

• in the attached flow, the magnitude of Tollmien-Schlichting (TS) waves is am-

plified, as in classical scenarios of natural transition;

• as the laminar flow encounters an adverse pressure gradient, the flow separates;

• in the separated shear layer, TS waves are further amplified, leading to Kelvin-

Helmholtz (KH) instability, the development of three-dimensional vortices, and

eventually to the breakdown to turbulence in the free shear layer;

• the now turbulent flow reattaches to the wall, thus closing the separation bubble.

A laminar separation bubble can thus form on the suction side of airfoils at low

Reynolds numbers and large angles of attack, when the stable vortex street observed

at somewhat lower angles or lower Reynolds numbers becomes unstable and causes

the separated boundary layer to reattach. This occurs for the SD7003 infinite wings

studied here, for which at a Reynolds number of 60,000 an LSB is present on the

upper surface of the foil, but is not observed at a lower Reynolds number of 10,000

when the separated shear layer does not reattach.

Figure 2-3: Illustration of the flow structure in a laminar separation bubble.
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The transition location along a separation bubble determines the bubble’s size:

rapid transition induces rapid reattachment, while delayed transition results in a

longer separation bubble. In turn, aerodynamic performance is strongly influenced

by the length of the separation region. Hence, the accurate prediction of transition

location is crucial in low Reynolds number flows, especially when an LSB is present.

2.4 Cross-Flow and Transition

The nature of cross-flow over swept wings is explained by Reed and Saric (1989, 1996);

Reshotko (1994). Near the leading edge, the combination of pressure gradient and

sweep deflects the inviscid streamlines inward (i.e. away from the tip of a backwards-

sweep wing), and then outwards near the trailing edge, as show in the left-hand side of

Figure 2-4. The boundary layer flow carries less momentum and hence this deflection

is larger near the wall, which results in a secondary flow perpendicular to the inviscid

streamline direction, known as cross-flow. Hence, the cross-flow velocity is zero both

at the boundary layer edge and at the wall as illustrated in Figure 2-4, such that the

cross-flow profile has an inflection point and is inviscidly unstable. Disturbances in

the form of cross-flow vortices propagate, which rotate all in the same direction close

to the inviscid streamline direction and have a span-wise periodicity of the same order

as the boundary layer thickness (about twice or three times the thickness). Relative

to these, counter-rotating Görtler-vortex instabilities are negligible when the sweep

angle is large compared to Re−1/2, that is for even moderately-swept wings.

The mathematical basis of cross-flow instability was developed in the 1950s by

Gregory et al. (1955) through an Orr-Sommerfeld type solution, and also by Owen

and Randall (1952) who derived a transition criteria for cross-flow instabilities as
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Figure 2-4: Schematic of swept wing’s (left) inviscid streamline, and (right) velocity
components in the boundary layer. [Figures from Reed and Saric (1989)]
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the location where the cross-flow Reynolds number ReCF = Wmaxδ10/ν reaches 150,

where δ10 denotes the distance from the wall to the point where the cross-flow velocity

reaches 10% of its maximum value Wmax (point above the maximum).

The parameters which are important in cross-flow stability studies are the height

of the inflection point (related to inviscid stability), the velocity gradient at this point

(larger shear stress at inflection resulting in more unstable profiles), and the maximum

cross-flow velocity (linked to the streamline curvature responsible for the cross-flow).

A finding which is of particular importance to transition prediction is provided by

Strokowsky and Orszag (1977): when the cross-flow is unstable, the boundary layer

stability characteristics are very close to those of the cross-flow alone (i.e. irrespective

of the streamwise flow); when the cross-flow is stable, the stability characteristics are

essentially those of the streamwise profile. Hence, the stability of the cross-flow

and streamwise profiles can usually be considered separately, except in regions where

interactions are important as for instance in the leading edge region (Reshotko, 1994).

As Reed and Saric (1996) point out, cross-flow instability is usually dominant

near the leading edge where pressure gradients are important, and the shift between

cross-flow and streamwise (Tolmien-Schlichting) instability occurs when the cross-

flow profiles become S-shaped and hence highly stable. The authors point out that in

this region where the prevalent mechanism switches, eN envelope methods need to be

used carefully (e.g. decay can be confused with large growth factors), and that critical

factors for transition due to cross-flow instability can be very large. Furthermore, non-

linear saturation of disturbance amplitude can be observed before transition occurs

and hence methods based on linear stability do not work well to predict cross-flow

dominated transition (Arnal, 1994; Reed and Saric, 1996; Saric et al., 2003).

Another important consideration related to transition prediction is that, due to

the large streamwise velocity gradients close to the wall and the related substantial

momentum exchanges, small fluctuations in the cross-flow or in the normal velocity

can lead to large steamwise disturbances which soon become too large for non-linear

interactions to be neglected (Saric et al., 2003). This can occur even close to the

attachment line which divides the flow between the branch that follows the upper

surface and the one that follows the lower surface. Thus, a flow can transition due

to the growth of streamwise instabilities over swept wings and yet be destabilized by

cross-flow fluctuations. Therefore, we deem important to device a transition method

that takes into account the fact that the cross-flow disturbs the streamwise profile

even when the TS waves are the most significantly amplified disturbances.
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2.5 Transition Prediction

While the modeling of turbulence has been the subject of a significant number of

studies for many years, the prediction and modeling of transition has only received

substantial attention in the last couple of decades. No single approach to transition

simulation has found widespread use and applicability for general CFD applications.

The different approaches reported in the literature on transition prediction fall

into three main categories: use of correlations, use of semi-empirical methods based

on linear stability, and use of low-Reynolds number turbulence models. In addition,

some authors make use of an intermittency factor function to blend fully-laminar and

fully-turbulent methods. A summary of the characteristics of each approach is given

here with a selection of previously published literature.

2.5.1 Empirical Correlations

The first approach ever used to account for transition in aerodynamic flows is the

use of empirical correlation methods, which usually provide a way of determining

the boundary layer momentum thickness Reynolds number, Reθ, at transition. The

popular Abu-Ghannam and Shaw (1980) correlations predict the start and the end of

the transition process, as well as the boundary layer development along the transition

region, given as input the free-stream turbulence level and velocity distribution.

While correlations are computationally inexpensive and can be very useful e.g. for

coupling potential-flow codes to boundary-layer computations, they lack in generality

and can only be expected to provide accurate predictions for the types of flows for

which they were derived. Furthermore, as Menter et al. (2006) point out, they cannot

be easily incorporated into standard CFD techniques due to such difficulties as defin-

ing the boundary layer edge, integrating boundary layer parameters on unstructured

grids and parallel computations, and the use of non-local information.

2.5.2 Linear Stability and the eN Method

Though the actual transition to turbulence depends on considerations not taken into

account by primary (linear) stability theory, the transition location can be related to

the amplification of linear disturbances by assuming that breakdown to turbulence

is inevitable past a given amplification. This is the basis for the very successful

and affordable transition prediction eN method introduced independently and almost

simultaneously by Ingen (1956) and by Smith and Gamberoni (1956). By solving the
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Figure 2-5: Envelope method for eN : curves of spatial amplification calculated from
the Orr-Sommerfeld equation, and their envelopes (dotted lines) for different shape
factors; ñ on the vertical axis is the amplification factor which we call here N . [Figure
from Drela and Giles (1987)]

Orr-Sommerfeld equation, the ratio of the amplitude of a disturbances to its initial

amplitude is calculated for a range of frequencies, and transition is taken to occur

when the amplitude of the single most amplified disturbance reaches a certain critical

amplification factor Ncrit, called the critical N -factor

The eN method is categorized as a semi-empirical method due to the determination

of the critical N -factor via empirical correlations or experimental observation, with

measured values between 7.8 and 10. The value of Ncrit = 9 being the most commonly

used, the method was known as the e9 method for many years.

As originally proposed, this method requires the computation of the amplification

factor evolution for all the possible disturbance frequencies. In order to decrease the

computational cost, envelope methods were developed by Gleyzes et al. (1985) and

by Drela and Giles (1987) which approximate with straight lines the envelopes of

integrated amplification rates for a given frequency. Thus, a family of amplification

curves is reduced to a line which is the locus of max(N) versus Reθ for a given

boundary layer shape parameter (dotted lines in Figure 2-5). In this manner, the

computational cost is reduced from that of computing all the amplification curves, to

that of computing a single line slope for the envelope.

Envelope methods have been, and are still, widely and successfully used for en-

gineering applications, for instance in the code XFOIL (Drela, 2002). Their success

might be linked to the fact that the uncertainty in the value of Ncrit is of the same or-

der of magnitude as the approximation made when using an envelope method relative

to the solution of the Orr-Sommerfeld equation.

It is important to keep in mind that the eN method, being based on linear stability
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theory, is particularly appropriate for predicting transition in flows where the linear

growth of TS waves is the dominant transition mechanism, which “happens to be

the case in a vast majority of airfoil applications” (Drela, 2002). It cannot predict

transition due to non-linear effects such as high free-stream turbulence or surface

roughness. To partly address this limitation, Mack (1977a,b) proposed the correlation

Ncrit = −8.43− 2.4 ln(Tu)

between the critical amplification and the free-stream turbulence intensity Tu; it

has proved very successful even though it reduces the free-stream disturbance to its

turbulence intensity only, thus not taking into account the boundary layer receptivity.

Separated Flows in Boundary-Layer Codes. Some authors have extended the

eN method to account for separation-induced transition. To simulate flows over air-

foils with an LSB, Dini et al. (1992) employ a database of stability characteristics of

velocity profiles, with Falkner-Skan self-similar profiles for the attached flow regions

and a more general family of profiles for separated flow regions. Shum and Marsden

(1994) developed a two-dimensional model for the analysis of boundary layers in LSBs

based on the simple bubble model of Horton (1967); the bubble calculation uses the

model downstream of separation and transition is determined by an eN method.

Coupling with Navier-Stokes Codes. Coupling the eN method for transition

prediction to Navier-Stokes codes has some inherent difficulties. First, it requires

tracking the amplification factor of disturbances along streamlines which are hard

to identify in three-dimensional flows. Furthermore, Navier-Stokes solvers are not

usually accurate enough to evaluate stability equations through laminar boundary

layer parameters (Stock and Haase, 1999; Radespiel et al., 1991, 2007), since the

boundary layer needs to be resolved with high accuracy—for the velocity profile and

its curvature—in order for stability computations to be reliable.

In spite of these issues, some researchers have coupled the eN method with Navier-

Stokes codes by addressing the different problems in one way or another. Most of

the approaches that have been reported involve the coupling of Navier-Stokes com-

putations with a stability module that either solves the stability equations, relies

on a stability database, uses an envelope method, or calls a boundary layer code as

an intermediate step. An early attempt was made by Cebeci (1989) who designed a

viscous-inviscid method for low-Reynolds number flows around airfoils. More recently,
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substantial efforts have been made by German Aerospace researchers at DLR to cou-

ple the eN method with low-order finite-volume RANS solvers (Stock and Haase,

1999; Stock, 2002; Radespiel et al., 1991; Nebel et al., 2003; Krimmelbein et al., 2005;

Radespiel et al., 2007; Yuan et al., 2005, 2007; Krumbein, 2006); most employ the

assumption of constant pressure in the direction normal to the wall and Bernoulli’s

formula to determine the boundary layer edge location.

Treatment of Cross-Flow Instabilities. The eN method being so successful at

predicting TS-type transition, several authors have extended it for the prediction of

transition due to cross-flow (CF) instabilities over three-dimensional geometries.

Krumbein (2006) of DLR coupled a RANS solver with a laminar boundary layer

code, and two eN databases in order to predict transition due to TS (represented by

NTS), CF (represented by NCF ), and mixed (interacting TS and CF) instabilities over

wings. The difficulty in predicting mixed transition is addressed via different stability

boundaries in the NTS-NCF plane. If laminar separation is detected, transition is

simply fixed at the separation point; this was shown to work well for relatively high

Reynolds number flows (2 to 11 millions) in which separation occurs over a small

spatial length—but this is not usually the case for low-Reynolds number flows.

Similarly, Krimmelbein and Radespiel (2009) employed an empirical approach in

which the values of Ncrit are reduced in the NTS-NCF plane by assuming a linear

decay of NTS with increasing NCF , if either of the two N -factors is above unity, in

order to represent a mixed-type transition (see also Nebel et al., 2003; Krimmelbein

et al., 2005).

2.5.3 Standard and Low-Reynolds Number Turbulence Mod-

els

Attempts at predicting transition using solely standard RANS turbulence models

have been unsatisfactory, in particular when separation is present (see for instance

Ekaterinaris and Menter, 1994). In view of this, several authors have proposed mod-

ifications or additions to standard models in order to treat low Reynolds number

flows. For instance Wilcox (1994) proposed changes to his k-ω model, including vis-

cous modifications such that k ∼ n2 as a wall is approached, the addition of two

transition-specific coefficients and of a way to trigger transition at a desired location.

Nürnberger and Greza (2002) proposed an extension of the SA model (Spalart and

Allmaras, 1994) for low-Reynolds number flows in periodic domains, which includes
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the use of the transition correlation of Drela (1995).

A major shortcoming of low Reynolds number RANS models is that they can

only distinguish the magnitude and an average frequency of perturbations, and hence

cannot discern the range of frequencies that destabilizes the boundary layer, nor

determine which perturbations actually cause transition. Their purpose is to predict

transitional flows using calibration coefficients as much as needed, rather than to try

to predict the onset and mechanism of transition. Furthermore, it has often been

found that low Reynolds number models cannot predict transition for a wide variety

of flows (Savill, 1993; Menter et al., 2006). Another disadvantage is the sensitivity of

model variables to far-field values and initial profiles (Abid, 1993; Zheng et al., 1998).

With respect to the limitations associated with separated flow simulations, Probst

and Radespiel (2008) point out that the Boussinesq approximation (eddy-viscosity

concept) cannot account for effects observed in flows with separation, such as Reynolds

stress anisotropy, local non-equilibrium, and streamline curvature. Their solution is

to use a Reynolds stress model (RSM) with an intermittency factor as a blending

function between laminar and turbulent RANS coefficients.

2.5.4 Use of the Intermittency Factor

In order to represent the transition length, many authors have combined laminar and

turbulent regions of the flow using the intermittency factor γ, which is defined as the

fraction of the time any point spends in turbulent flow and can be computed via a

function specification (e.g. that by Dhawan and Narasimha, 1958) or via a transport

equation. It quantifies the existence of turbulent spots (γ = 0 in laminar flow, γ = 1

in fully turbulent flow), but requires the specification of the onset of transition by

another method such as an eN -type approach. It has been used to modify RANS

models by replacing the eddy viscosity µt with γµt, while other quantities are taken

as linear combinations of laminar and turbulent parts, e.g. f = (1− γ) f ` + γ f t.

Of particular interest to us is the work by Lian and Shyy (2007) who employ a

RANS k-ω solver coupled with an envelope eN method based on Drela and Giles

(1987), with their own intermittency function tailored for simulating low Reynolds

number flows with separation. They study the two-dimensional flow around an

SD7003 profile with good comparison with experimental measurements. As men-

tioned previously, they assume constant pressure in the direction normal to the wall

and use Bernoulli’s formula to determine the location of the boundary layer edge.

There is an intrinsic limitation in an approach that treats the overall flow as
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a linear combination of laminar and turbulent parts, namely the lack of interaction

between turbulent spots and laminar flow pointed out by Steelant and Dick (1996). In

particular, laminar flows are found to separate as soon as an adverse pressure gradient

is encountered. Of all the reported methods that make use of the intermittency factor,

only Menter et al. (2006) have tested the resulting transition prediction capability

in conjunction with laminar separation bubbles and they obtain good results when

incorporating a modification designed for separation-induced transition. Another

advantage of their approach is that it is local and meant to be easily coupled with

general CFD methods.

Another efficient coupling with CFD codes is the transition approach proposed by

Warren and Hassan (1998) who treat non-turbulent fluctuations in a manner similar

to the turbulent fluctuations by introducing an effective eddy viscosity

µ = µ` + [(1− γ)µ`t + γµt]

which involves the laminar (molecular) viscosity µ`, the eddy-viscosity µt, as well as

a viscosity that represents non-turbulent fluctuations and is linked to the turbulence

model variables by µ`t = Cµ ρ k τ . Their method is not designed to predict mixed

transition, and the application to high Reynolds number flows where either TS or CF

instabilities dominate seem to produce accurate results. However, it requires a priori

knowledge of the dominant transition mechanism, which is not possible for all flows.

2.5.5 Other Approaches

Inspired by the works of Mayle and Schulz (1997), Walters and Leylek (2004) proposed

a different kind of RANS model to account for transitional flows. It is a three-

equation model which adds to a traditional k-ε model an equation for a laminar kinetic

energy variable, which is meant to represent the growth of non-turbulent, streamwise

fluctuations present in the pre-transitional regime and functions as a source term for

the turbulent kinetic energy. The model was successfully tested for turbulent channel

flow and bypass transition applications. However, this model does not seem to be

applicable to separation-induced transition.

In his three-dimensional study of the low Reynolds number flow around an SD7003

airfoil, Tang (2006) avoided predicting transition altogether and simply set the tran-

sition location to “the point where the tangential velocity adjacent to the surface

reverses direction for the second time after the laminar separation.” It is doubtful

that this procedure would prove accurate for a wider variety of flows.

50



2.6 Large Eddy Simulation

On the one end of the spectrum of numerical simulation techniques for turbulent flows

is the approach based on the Reynolds-Averaged Navier-Stokes (RANS) equations

which employs turbulence closure models to represent all the motion scales. For

unsteady flows, Unsteady RANS (URANS) simulations have been used, but it is not

clear what this approach actually solves for since phase-averaging is not well defined

(Lesieur et al., 2005). Fluctuations are smoothed out by Reynolds averaging and

hence RANS/URANS methods do not normally allow for the accurate prediction of

instantaneous and statistical quantities.

On the other end of the spectrum is the Direct Numerical Simulation (DNS)

method which resolves all the flow scales down to the smallest dynamically significant

scale (the Kolmogorov scale) and involves no modeling approximation. Its computa-

tional cost remains prohibitive for most flows of engineering and design interest, in

particular for complex geometries, flows at moderate to high Reynolds numbers, and

even simple but unsteady low Reynolds number cases.

An intermediate approach, still accurate and yet more affordable, is to perform

Large Eddy Simulations (LES). While it is estimated that LES type simulations will

not be feasible for industrial applications (e.g. flow over an aircraft) before the second

half of the century, they can be extremely useful for simpler flows.

In an LES, the large-scale motions are resolved while the small scales are modeled.

The principle justifying this approach is the fact that the larger scales, because of

their size and strength, carry most of the flow energy while being responsible for

most of the transport, and therefore should be simulated precisely (i.e. resolved). On

the other hand, the small scales have relatively little influence on the mean flow and

thus can be approximated (i.e. modeled). Furthermore, small scales tend to be more

homogeneous and isotropic and hence are easier to model for a wide variety of flows

than the large scales.

Because of the non-linear nature of the Navier-Stokes equations, all turbulent

scales are dynamically coupled. Thus, for the resolved scales to be dynamically ac-

curate, the effect of unresolved, subgrid scales needs to be taken into account, either

with a subgrid scale (SGS) model as in the standard (explicit) LES approach, or via

numerical dissipation as in the Implicit LES (ILES) method.

A peculiarity of the LES approach is that grid refinement is linked to modeling

since the size of the smallest resolved eddies corresponds to the grid size. Refining

the grid results in “large scale” motions containing smaller eddies, and hence the aim
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of grid refinement is to provide richer structures (physical resolution): the solution

will show more and more features as the resolution is increased. On the contrary, in

a RANS approach, the goal of grid refinement is numerical accuracy (Spalart, 2000).

Another aspect to keep in mind is that the LES method relies on the premise

that small scales are close to homogeneous and isotropic and have little influence on

the mean flow. In order for this to hold in a strict mathematical sense, the cut-

off between resolved and subgrid scales should be located in the inertial subrange

where the energy cascade decays as k−5/3 (see Appendix A). This is an imperative

requirement only when using scale invariance models (Meneveau and Katz, 2000),

and LES has successfully been applied with different cut-off levels.

2.6.1 Limitations of Explicit LES

A major assumption intrinsic to explicit LES is that the numerical error related to

the numerical technique employed is small compared to the resolution error resulting

from the fact that not all significant scales are resolved (see Appendix C for more on

the sources of error in LES). However, numerical stabilization is of a dissipative and

dispersive nature, and the truncation errors in a typical LES are of the same order of

magnitude as the subgrid-scale terms (Sagaut, 2007; Hirt, 1969; Ghosal, 1996).

Through a theoretical analysis of isentropic turbulence, Ghosal (1996) shows

that the magnitude of dispersive errors of a high-order (up to eighth) central finite-

difference scheme is larger than the subgrid-scale forcing term, and that the numerical

error dominates the subgrid-scale contribution at all resolved scales. This has been

confirmed by numerical experiments (Sagaut, 2007). It is also possible that par-

tial cancellations occur between numerical and modeling errors for some flows, thus

resulting in a more accurate solution when lower-order methods are employed, but

counting on random error cancelation cannot be considered a sensible approach.

2.6.2 Implicit LES

An alternative to the use of subgrid-scale models is to take advantage of the numerical

dissipation of the solution scheme to account for the dissipation that would take place

in the unresolved scales. As Grinstein et al. (2007b) point out, the ILES development

and success has emphasized the importance of using numerical methods that inherit

the relevant properties of real physical flows rather than simply considering them as

approximations. The aim is to provide the viscous effect of the unresolved scales on

the large-scale motions without explicitly resolving these small scales, thus “captur-
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ing physics with numerics” in a manner similar to what is done in shock capturing

techniques (Grinstein et al., 2007a).

The first ILES approach was introduced by J. Boris and his collaborators at the

Naval Research Laboratory (NRL) who termed it Monotone Integrated LES (MILES)

as a reference to the use of monotone (positive-preserving) convection algorithms

(Boris, 1990). Boris (2007) explains that the “MILES approach evolved more as

a growing realization than an invention”. He gives arguments for why the MILES

approach (and other ILES) should work, and details some important physical consid-

erations: the cut-off level should be in the inertial range of the energy cascade (see

Appendix A) in order to warranty that the energy contained in the unresolved scales

is small enough and that all energy-producing eddies are resolved (more details in

Appendix C). Furthermore, one cannot expect to accurately resolve features that are,

by the grid coarseness, necessarily under-resolved, but one can reasonably demand

that resolved features be simulated accurately: the algorithm is to “do minimal dam-

age to the larger wavelengths while still incorporating, at least qualitatively, most of

the local and global effects of the unresolved turbulence” (Boris, 1990).

While the above are qualitative considerations, several authors have made use of

modified equation analysis (MEA) to identify and quantify the errors of a numerical

algorithm: it is possible to show that a numerical method solves a certain differential

equation more accurately than the original equation, and that “leading-order trun-

cation error terms introduced provide implicit SGS models similar in form to those

of conventional mixed SGS models” (Drikakis et al., 2007). Again, more details are

provided in Appendix C.

The absence of an explicit subgrid-scale model equation also makes the ILES

approach easy to implement (Grinstein et al., 2007c). Furthermore, the lack of an

extra equation to solve reduces the computational cost, and hence one could use a

somewhat slightly finer mesh instead. As Boris (1990) puts it, “a factor of two increase

in the spatial resolution of [an implicit] LES model will bring more improvement in

the accuracy of the well-resolved scales than all the work in the world on the subgrid

model of a more coarsely resolved LES.”

Finally, it is important to note that different numerical algorithms (and implemen-

tations) provide different implicit subgrid-scale models and result in different effects

on the resolved scales, similarly to the use of different explicit SGS models; hence

different algorithms will likely be suited for different types of flow. As stated by

Grinstein et al. (2007b), “in principle, the lack of parameters in the ILES approach

implies the increased generality and predictive capabilities of the ILES approach. In
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practice, we believe it is important to quantify the limits of applicability of this ap-

proach by continuing with testing and making efforts to understand its foundations.”

2.7 Transition and Turbulence Prediction with a

DG Method

High-order methods are particularly suited for transition and turbulence simulations.

They provide low diffusion error, which allows for the use of fewer grid points and

degrees-of-freedom than low-order methods to resolve a given length scale. In addi-

tion, they have the advantage of having a low dispersion error, which refers to the

error in the representation of waves (phase errors for instance) introduced by time

marching. This is important for accurate long time integrations for which dispersion

would for instance affect the turbulent spectrum.

The introduction of high-order methods for fluid flow computations is relatively

recent, and for most of the past 40 years the numerical simulation of turbulent flows

has been dominated by second-order-accurate finite-volume methods for which accu-

racy is closely linked to the number of grid points and hence to the computational

cost. The alternative of high-order finite-volume methods requires complex recon-

structions. The finite-difference method does not have this disadvantage, but its

dependence on structured grids makes it ill-suited to handle complex geometries.

The Discontinuous Galerkin (DG) method provides many of the advantages of

finite-element methods while retaining the main strengths of finite-volume methods

for conservation laws. In particular, it relies upon a strong mathematical foundation,

allows for high-order implementations, and is able to handle complex geometries and

grid adaptation with unstructured grids. Furthermore, it provides local conservation

and a stable discretization of the convective operator.

On the other hand, the DG method requires significantly more operations per

degree-of-freedom than finite differences and low order finite volumes. This is only

partly offset by the use of high-order representations of the solutions, with typically

third to fifth order polynomials used in practice. Much needs to be done to make

the DG method a serious contender to established CFD techniques, both in terms

of numerical schemes and of implementation, but the advantages of DG and the

potential for resolving some of the main limitations of other methods for fluid flow

computations seem to justify the effort.

The DG method was first introduced by Reed and Hill (1973) for the solution of
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a linear transport equation. Some of the milestones that have contributed towards

the successful use of DG for fluid flow problems include the following. Chavent and

Cockburn (1989) first introduced the finite-volume technique of slope-limiting to treat

hyperbolic systems with DG, and Cockburn and Shu (1991, 2001) presented a DG

method using Runge-Kutta time stepping (RKDG). A generalization of the RKDG

approach for convection-diffusion systems is due to Bassi and Rebay (1997), with a

further improvement embedded in the Local DG (LDG) method by Cockburn and

Shu (1998) in which stability is achieved at the expense of compactness. This loss

motivated Peraire and Persson (2008) to derive a more efficient Compact DG (CDG)

technique. Bassi and Rebay (2000) also improved their method for better stability

and to preserve a compact stencil. The last couple of years have seen an effort at

reducing the number of degrees-of-freedom of the DG method and taking advantage

of super-convergence properties, with the emergence of Hybridized DG (HDG) and

Embedded DG (EDG) methods (Cockburn et al., 2008, 2009; Nguyen et al., 2009).

2.7.1 RANS with DG

The DG method having only been applied to fluid flow problems in the last couple

of decades, there are few published results on turbulent flows. Another reason lies

in the robustness challenges that a DG implementation for RANS poses: high-order

procedures are even more sensitive than low-order simulations to under-resolution

and numerical artifacts because of the very low intrinsic dissipation.

Bassi et al. (2005) applied a DG method with polynomials of order at most two

(for up to third-order spatial discretizations) and a k-ω turbulence model to study

two-dimensional, high Reynolds number applications. They obtained good results

with relatively coarse computational grids proving the effectiveness of the method,

but found it to be “a challenging task because of the extreme stiffness of the problem.

In practice it is mandatory to supplement the RANS and turbulence model equations

with some form of limiting of the magnitude of the computed turbulent quantities

in order to prevent the blow-up of the simulation.” This can happen for instance

when the eddy viscosity becomes negative, thus resulting in energy production rather

than the intended dissipation. Among the modifications to the original turbulence

model that had to be made are the use of ln (ω) as the model variable instead of ω,

setting the turbulent kinetic energy to max (0, k) in the source terms, and imposing

realizability conditions to ensure that normal turbulent stresses remain positive.
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Landmann et al. (2006, 2008) used the form of the k− ln(ω) method of Bassi et al.

(2005), as well as the SA model by Spalart and Allmaras (1994) with a hard limiting

on the model variable. They provide results for the two-dimensional simulations of

both laminar (circular cylinder and airfoil) and turbulent (flat plate with prescribed

transition and airfoil) cases. With the use of polynomials of order one through three,

they obtain good agreement with previously published results.

Following an approach that was used for shock capturing by Persson and Peraire

(2006), Nguyen et al. (2007) performed two-dimensional DG RANS simulations with

the SA model by introducing an artificial viscosity approach. They identified the fast

change in curvature of the eddy viscosity profile that occurs at the boundary layer

edge as one of the reasons artificial viscosity is required, since the thickness of this

region scales like the laminar viscosity and hence cannot be adequately resolved. As

the authors point out, the result of the artificial diffusion is to modify the profiles of

eddy viscosity at a location where it tends to zero and hence the effect on the overall

solution is minor. The turbulent suppression and trip terms of the SA model are not

implemented, and hence the simulations are fully turbulent with results given for a

flat plate, circular cylinder, and airfoil flows in subsonic and transonic regimes.

An alternative approach to using the SA model with DG is proposed by Oliver

and Darmofal (2009) and consists of modifying the model equation. Some terms are

revised in order to prevent them from becoming negative with positive eddy viscos-

ity values, and additional changes are introduced when the eddy viscosity becomes

negative. Again, no trip term is implemented and fully turbulent, two-dimensional

results are provided for the flow around airfoils. The authors point to the turbulence

model regularity as a determining factor for optimal accuracy and note that addi-

tional smoothness of turbulence models would significantly improve the robustness

and accuracy of high-order RANS simulations.

Kessler (2007) observes that, since the solution is represented by high-order poly-

nomials in each grid cell, it has some structure within the cell, and hence the imple-

mentation of physically and numerically sound limiting procedures such as the ones

commonly employed in finite-volume methods is not straight-forward. He suggests

that a turbulence model may need to be developed specifically for DG methods and

take advantage, for instance, of the availability of high-order derivatives.
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2.7.2 LES with DG

The DG method has only been used for (LES) by a couple of groups. Collis (2002),

Ramakrishnan and Collis (2004) use a Variational Multi-Scale (VMS) LES method

with DG spatial discretization to simulate three-dimensional, fully-developed, chan-

nel flows with no subgrid-scale model (i.e. ILES or coarse DNS). They then consider

LES with a constant-coefficient Smagorinsky subgrid-scale model, and with a con-

stant coefficient Smagorisky variant of the VMS model for a channel. The authors

acknowledge the fact that computing turbulence statistics from a DG method is non-

trivial, but show that the prediction of low-order statistics (mean and root mean

square quantities) can be accomplished using fewer degrees-of-freedom with DG than

with traditional low-order methods. They also note that the numerical dissipation in

low-order upwind finite-differences and finite-volume methods tend to suppress tur-

bulent fluctuations, and point out as future research the need to study the role of

subgrid-scale modeling in DG discretizations.

Sengupta and Mashayek (2007) used a DG spectral method for two-dimensional

LES of channel flow using the dynamic subgrid-scale model of Germano et al. (1991).

They also performed DNS runs and compared the results to previous studies. Xu

et al. (2007) employed a DG spectral method for DNS and LES with the Smagorinsky

model for the two-dimensional simulations of a mixing layer and a back-facing step.

In the author’s knowledge, at the time when the first results of the present work

were presented (Uranga et al., 2009), no attempts had been reported of the use of

DG with an Implicit LES approach for non-periodic, fully three-dimensional flows.

The only three-dimensional simulation published was for a periodic, fully developed,

channel flow by Collis and collaborators.

2.8 Flow Around SD7003 Airfoils and Wings

We now turn to review some of the published research involving the SD7003 airfoil

used in the present work and summarized in Table 2.1. This profile, shown in Figure

2-6, has a maximum thickness of 8.51% and camber of 1.46%, and Selig et al. (1989,

1995) provide detailed experimental measurements of velocity profiles, drag, lift, and

moment coefficients at Reynolds numbers ranging from 60,000 to 300,000.

Low Reynolds number studies of laminar-separation bubbles (LSB) on airfoils and

wings have extensively made use of the SD7003 profile since it exhibits an LSB on the

upper surface that is present over a range of Reynolds numbers and angles of attack.
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It was designed by Selig’s group (Selig et al., 1989, 1995) for use in model gliders

with low Reynolds number flows that are prone to laminar separation. In order to

minimize the effects of separation, moderately adverse pressure gradients upstream

of the separation point amplify the Tollmien-Schlichting (TS) disturbances so that

transition takes place rapidly after separation and the flow reattaches.

The flow around a rectangular SD7003 wing at Reynolds number 60,000 and

4◦ angle of attack has been studied experimentally using particle-image velocimetry

(PIV) by several groups, thus providing a good database for validation. Ol et al.

(2005) give a comparison between results obtained at three different facilities: the

tow tank at the Institute for Aerospace Research (IAR) of the National Research

Council of Canada, the Technical University of Braunschweig (TU-BS) low-noise wind

tunnel, and the Air Force Research Laboratory (AFRL) free-surface water tunnel.

The comparison focuses on contours of mean velocity and Reynolds stresses, as well

as on separation, transition, and reattachment locations. The results from IAR and

TU-BS compare well, but the separation bubble of the AFRL experiments is located

significantly closer to the leading edge: the difference in separation location between

AFRL and IAR is of 45%, while the difference between IAR and TU-BS is less than

10%. The authors suggested that this may be due to the true angle of attack of the

wing in the AFRL experiments being slightly larger than the prescribed 4◦. Results

for angles of attack of 8◦ and 11◦ obtained at the AFRL water tunnel are also provided.

Three-dimensional Implicit Large Eddy Simulations (ILES) were carried out by

M. Visbal and collaborators (Galbraith and Visbal, 2008; Visbal et al., 2009) using

a high-order compact-differences code and well-resolved grids. They studied the flow

at a Reynolds number of 60,000 and six different angles of attack between 2◦ and 14◦,

and also at varying Reynolds numbers between 10,000 and 90,000 for an 8◦ angle of

attack. They observed that the LSB decreases in size and moves closer to the leading

edge with either increasing angle of attack or increasing Reynolds number, while no

transition takes place for Reynolds numbers of and below 40,000. In the cases when

Figure 2-6: SD7003 airfoil.
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Table 2.1: Previous studies of low Reynolds number flow around an SD7003 airfoil.

Reynolds
Number

Angle of
Attack

References

10,000; 30,000 8◦ Galbraith and Visbal (2008); Visbal et al. (2009)
60,000 4◦ Ol et al. (2005); Tang (2006); Yuan et al. (2007);

Lian and Shyy (2007); Galbraith and Visbal
(2008); Visbal et al. (2009); Qin et al. (2009)

8◦, 11◦ Ol et al. (2005); Windte and Radespiel (2008);
Galbraith and Visbal (2008); Visbal et al. (2009)

2◦, 6◦, 14◦ Galbraith and Visbal (2008); Visbal et al. (2009)
66,000 2◦, 4◦, 8◦ Hain et al. (2009)
90,000 8◦ Galbraith and Visbal (2008); Visbal et al. (2009)

transition did occur, they noted that span-wise coherent structures were present in the

separated shear layer which break down due to span-wise instabilities. As expected,

the size of the turbulent flow structures decreases as the Reynolds number increases.

An in-depth stability study for the Re = 60, 000 case at 4◦ angle of attack is

described in another paper by Visbal’s group (Qin et al., 2009). Using as base flow

the time-averaged flow of unsteady ILES, the assumption of parallel flow (over the

small streamwise distance that encloses the LSB) and a smooth spline fitting of the

velocity profiles, it is shown that the flow is indeed unstable in the presence of small

disturbances. These disturbances are found to be confined to the LSB, and have

maximum magnitude and maximum gradient at the center of the bubble, which is

consistent with the Reynolds stress contours presented by Visbal et al. (2009).

This flow at Re = 60, 000 and angle of attack of 4◦ was also studied computa-

tionally by Tang (2006) and by Lian and Shyy (2007), with good agreement with

experimental studies. Tang (2006) employed three different turbulence models in

RANS simulations as well as an LES calculation; as indicated earlier (section 2.5.5),

no transition model is used with the RANS computations and transition is set to the

location where “the tangential velocity adjacent to the surface reverses direction for

the second time after laminar separation.” Lian and Shyy (2007) make use of the

standard k-ω model in conjunction with an eN transition module and provides values

for lift and drag coefficients unavailable from PIV experiments.

Hain et al. (2009) conducted an extensive experimental investigation using time-

resolved particle-image-velocimetry (TR-PIV) measurements on the 66,000 Reynolds

number flow around an SD7003 rectangular wing at angles of attack of 2◦, 4◦, 8◦. The
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focus is on the dynamics of laminar separation and on the transition mechanism, and

they show that transition is dominated by Kelvin-Helmholtz (KH) instabilities that

are responsible for vortex growth and breakdown to turbulence in the separated shear

layer. For some cases, they observe that the instabilities that grow after separation

and the instabilities that grow before separation have almost the same most unstable

frequency. They thus conclude that the TS waves trigger transition, which explains

why the length of the LSB is sensitive to the magnitude of the TS waves at separation.

Note that the authors consider TS and KH waves to be different phenomena, while

actually KH instabilities are a subset of TS instabilities; the Orr-Sommerfeld equation

predicts both, whether the flow is attached (known as TS modes) or separated (known

as KH modes).
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Chapter 3

Methodology

The present chapter provides a description of the computational approach used for

solving the three-dimensional, unsteady, compressible Navier-Stokes equations with

the Discontinuous Galerkin method. Details on the time-stepping procedure and

computational grids are given, as well as on how the boundary layer is analyzed and

the transition mechanism established. Finally, a brief description of the form of a

proposed transition model equation is given.

3.1 Governing Equations

The motion of a compressible Newtonian fluid is governed by the Navier-Stokes equa-

tions which express the conservation of mass, momentum, and energy as

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (3.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xj

for i ∈ {1, 2, 3} (3.2)

∂

∂t
(ρE) +

∂

∂xj
[uj (ρE + p)] =

∂

∂xj
(uiτji) +

∂qj
∂xj

(3.3)

where the viscous stress tensor, τij, and the heat flux, qi, are defined by

τij ≡ µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
(3.4)

qj =
µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
. (3.5)
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In the above equations, ρ denotes the fluid density, ui is the velocity component in the

direction xi, p the static pressure, E the total energy per unit mass, µ the dynamic

viscosity coefficient, and Pr the flow Prandtl number assumed constant. In order to

close the system, the ideal gas equation of state is used in its form

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
. (3.6)

The specific heat ratio is set to γ = 1.4 and the Prandtl number to Pr = 0.72.

Moreover, the kinematic viscosity, ν = µ/ρ, is assumed to be constant since only low

Mach number flows are considered.

In the present work we follow the Implicit Large Eddy Simulation (ILES) ap-

proach, and the unresolved small eddies are accounted for by means of the numeri-

cal dissipation. Hence, no subgrid-scale model is employed and the full (unfiltered)

compressible Navier-Stokes equations are solved. This approach is described and

motivated in detail in Section 2.6.2 and has been successfully used by Visbal and

collaborators using a sixth-order compact difference method for the simulation of low

Reynolds number flows around an SD7003 airfoil (Galbraith and Visbal, 2008; Visbal

et al., 2009; Garmann and Visbal, 2009; Visbal, 2009).

3.2 High-Order Discontinuous Galerkin Method

The modeling equations (3.1)–(3.6) are solved using a high-order Discontinuous Galerkin

method implemented in the computational code 3DG. This framework solves time-

dependent systems of conservation laws of the form





∂u

∂t
+∇ · F(i)(u)−∇ · F(v)(u,q) = S(u,q)

q−∇u = 0
(3.7)

in a domain Ω, with conserved state variables u, inviscid flux function F(i), viscous

flux function F(v), and source term S. In the case of the three-dimensional, unsteady,
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compressible Navier-Stokes equations,

u =




ρ

ρu1

ρu2

ρu3

ρE




, F
(i)
i =




ρui

ρuiu1 + δi1p

ρuiu2 + δi2p

ρuiu3 + δi3p

ρui (E + p/ρ)



, F

(v)
i =




0

τi1

τi2

τi3

ukτik + µγ
Pr

∂e
∂xi



, S =




0

0

0

0

0



,

(3.8)

where e = E − ukuk/2 is the internal energy per unit mass.

Following the finite element procedure, we consider a triangulation Th of the spatial

domain Ω and introduce the finite element spaces

Vh = {v ∈ [L2(Ω)]m | v|K ∈ [Pp(K)]m, ∀K ∈ Th} ,
Σh = {r ∈ [L2(Ω)]dm | r|K ∈ [Pp(K)]dm, ∀K ∈ Th} ,

where Pp(K) is the space of polynomial functions of degree at most p ≥ 0 on the

tetrahedral element K, m is the dimension of u and number of states, and d is

the spatial dimension. In the case of three-dimensional simulations, d = 3 and

m = 5. Curved elements are handled by iso-parametric mapping to a straight

master (reference) element in which the polynomials are defined.

The DG formulation is then of the form: find uh ∈ Vh and qh ∈ Σh such that for

all K ∈ Th,
∫

K

qh · r dx = −
∫

K

uh∇ · r dx+

∫

∂K

û r · n ds ∀r ∈ [Pp(K)]dm ,
∫

K

∂uh
∂t

v dx−
∫

K

[F(i)(uh)− F(v)(uh,qh)] · ∇v dx

=

∫

K

S(uh,qh)v dx−
∫

∂K

[F̂(i) − F̂(v)] · n v ds ∀v ∈ [Pp(K)]m .

Here, the numerical fluxes F̂(i), F̂(v) and û are approximations to F(i), F(v) and u,

respectively, on the boundary ∂K of the element K. The DG formulation is complete

once these numerical fluxes are specified in terms of qh and uh, and the boundary

conditions set.

The inviscid flux F̂(i) is determined using Roe’s scheme (Roe, 1981) and provides

the numerical dissipation needed for ILES. The viscous flux F̂(v) is calculated us-

ing the Compact Discontinuous Galerkin (CDG) method introduced by Peraire and

Persson (2008): by choosing the numerical flux û to be a function of uh and not qh,
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the additional qh variables can be eliminated after discretization at element level.

This results in a system involving only the degrees of freedom corresponding to the

conserved variables uh. The final result is a system of coupled ordinary differential

equations of the form

Mu̇ = R(u) , (3.9)

where u is a vector containing the degrees of freedom associated with uh, and u̇

denotes its time derivative. Here, M is the mass matrix and R is the residual vector

which is a nonlinear function of u. Nodal basis expansions are used to represent uh

inside each element.

The system (3.9) is linearized using Newton’s method and the resulting linear sys-

tem solved using Conjugate Gradient Squared (CGS) preconditioned by incomplete

factorizations (ILU) following Persson and Peraire (2008). The code is parallelized us-

ing a domain-decomposition approach with block-wise ILU factorizations, the details

of which can be found in the paper by Persson (2009).

3.3 Computational Grids

The flow around a rectangular, constant-chord, wing with an SD7003 airfoil profile

at an angle of attack of 4◦ and free-stream Mach number of 0.2 is considered. Unless

otherwise specified, the wing span-to-chord ratio is set to 0.2 following the findings of

Galbraith and Visbal (2008). The axes are set with x being the chord-wise direction

and y the span-wise direction, such that the leading-edge is located along the line

x = 0, z = 0.

From the wing’s leading-edge line, the domain extends 4.3 chord lengths upstream,

7.4 chord lengths downstream, 5.9 chord lengths above, and 6.0 chord lengths below.

Thus, if we denote by c the chord length, the domain has the range [-4.3c , 7.4c]

× [0 , 0.2c] × [-6.0c , 5.9c] along the chord-wise, span-wise, and vertical directions,

respectively.

The computational domain has periodic boundary conditions along the span-wise

direction in order to simulate an infinite wing. The wing’s surface is represented by a

non-slip, adiabatic boundary condition, while a free-stream type boundary condition

employing Roe’s approximate Riemann solver is imposed at the outer edges (far-field)

of the computational domain.

We use the term high-order nodes to refer to all the nodes used in the numerical

procedure at which the variable states are computed, so as to differentiate them
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Figure 3-1: Span-wise view of the coarse (top: grid 1), medium (middle: grid 2), and
fine (bottom: grid 3) computational grids: domain (left) and closer foil view (right).

from the nodes at the corners of each tetrahedral element. Note that the number of

high-order nodes is equal to the number of degrees-of-freedom per state.

The grids are constructed by extruding a two-dimensional structured C-mesh

around the profile which is generated from a rectangular grid by conformal transfor-

mations. To obtain curved elements that are aligned with the geometry boundaries

and do not intersect, a fine structured grid is generated and the high-order nodes of

the computational mesh placed at the mesh points of this fine grid. Note that this

fine grid is such that the number of subdivisions in each direction is compatible with

the number of high-order nodes required for a given polynomial order. The tetra-

hedral connectivities of the computational mesh are then obtained directly from the

cartesian topology of the fine structured grid by splitting each cartesian cell into six

tetrahedrals. The boundaries are thus represented accurately and a high-order mesh

appropriate for DG computations obtained.

In order to investigate how much spatial resolution is needed to capture the transi-

tion to turbulence that occurs along the separation bubble, three computational grids
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Table 3.1: Characteristics of the computational grids employed for the unswept wing.

Grid and Number of Number of Number of unique high-order nodes
polynomial order elements high-order nodes upper surface span-wise

grid 1, p = 3 21,504 430,080 61 13

grid 2, p = 3
52,800

1,056,000 108 13
grid 2, p = 4 1,848,000 144 17

grid 3, p = 4 85,500 2,992,500 162 21

are considered: a coarse grid (hereafter referred to as grid 1) with 21,504 tetrahedral

elements, a medium grid (grid 2) with 52,800 elements, and a fine grid (grid 3) with

85,500 elements. Figure 3-1 shows the computational grids on a planar cut along the

span-wise direction.

Table 3.1 summarizes the characteristics of the different grids employed. For grid

1, third-order polynomials (p = 3) are employed for a fourth-order accurate method

in space, thus giving 430,080 high-order nodes. For grid 2, both third-order and

fourth-order (p = 4) polynomials are used, resulting in two refinement levels: one

with 1,056,000 high-order nodes and the other one with 1,848,000. In the span-wise

direction, both grids 1 and 2 have 4 elements, thus providing 13 and 17 unique nodes

along the span at p = 3 and p = 4, respectively. Grid 3 has 15% more points than

grid 2 in each direction (around the foil, radially, and along the span), and we use it

with p = 4 for a total of 2,992,500 high-order nodes. Note that the factor of 1.15 in

grid spacing h corresponds to a factor of 2 in the convergence rate hp+1 of the DG

method for smooth problems with p = 4.

Throughout this work, p = 3 is used whenever no polynomial order is specified.

3.4 Time Stepping and Averaging Procedure

Time stepping is performed with a two-stage, A-stable, third-order accurate diagonal

implicit Runge-Kutta (DIRK) method (Alexander, 1977). This allows to take large

time steps chosen based on physical time accuracy considerations and not on numeri-

cal stability factors. Unless otherwise specified, the simulations are performed with a

non-dimensional time step of dt∗ = dt×U∞/c = 0.01, and the solution is saved every

5 steps (∆t∗ = 0.05) for computing statistics and other post-processing tasks.

For all the cases considered, the flow is initialized to a uniform field at the far-field

conditions. The initial transient is over by t∗ = 15 as estimated from the temporal
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evolution of the forces on the wing. Hence, unless otherwise specified, the average

fields, turbulence correlations, and statistics are computed by averaging the solution

over a non-dimensional time interval of 10 which corresponds to 200 solutions with

t∗ ∈ [15, 25], and then performing a spatial average over 20 span-wise planes (unless

otherwise specified) since the domain is span-wise periodic.

For the spatial averaging, the solution is interpolated (to an order compatible with

the polynomial order being used so as to avoid introducing interpolation errors) at

20 x-z planes equally-spaced along the span and then these 20 interpolated planar

solutions are averaged.

3.5 Angle of Attack for Comparisons with XFOIL

XFOIL (Drela, 2002) is a two-dimensional, steady, potential flow solver with an inter-

active boundary layer coupling and an eN envelope method for transition prediction

(Drela and Giles, 1987). It was developed for the design and analysis of subsonic

airfoils, and has been extensively validated and used as reference for the study of a

wide variety of airfoils.

The Navier-Stokes methods apply the specified free-stream angle α = 4◦ at the

domain’s outer inflow boundary. The missing vortex upwash at the inlet due to the

airfoil’s presence gives a decrease in the effective angle of attack seen by the airfoil

by the amount, in radians,

∆α = − CL
4π r/c

where CL is the airfoil lift coefficient and r/c is the distance-to-chord ratio between

the inlet boundary and the wing’s lift centroid, such that the higher-order y-doublet

far-field term is exactly zero. The distance between the airfoil’s leading edge and the

center of lift can be approximated using the moment coefficient CM by

xL
c

=
1

4
− CM
CL

.

The domain extends 4.3 c upstream of the leading edge, and hence r/c = 4.3 + xL/c.

Note that the ∆α correction is only significant when the domain inflow boundary is

close to the foil as in the present work.

Since XFOIL fully accounts for the farfield vortex, it has been run at the smaller

angle of attack αXFOIL = α + ∆α in order to give a more correct comparison to the

Navier-Stokes results. As an approximation, the lift and moment coefficients for com-
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Table 3.2: Angle of attack correction, ∆α, and angle of attack for XFOIL computa-
tions, αXFOIL, for the three Reynolds numbers considered.

Reynolds
Number

CL(4◦) CM (4◦) xL/c ∆α αXFOIL

10, 000 0.2842 −0.0167 0.3088 −0.2812◦ 3.72◦

22, 000 0.4083 −0.0466 0.3641 −0.3991◦ 3.60◦

60, 000 0.6370 −0.0347 0.3045 −0.6308◦ 3.37◦

puting ∆α are obtained from XFOIL at the nominal 4◦ angle of attack. Table 3.2

gives the angle of attack correction and effective angle of attack for the different

Reynolds numbers considered in the present work; these are the result of an approx-

imation and the exact inflow boundary conditions for the present simulations have

their own uncertainty. The critical amplification factor in XFOIL is set to Ncrit = 7

unless otherwise specified.

Alternatively, one can perform an inviscid simulation and then set XFOIL to

match the inviscid lift coefficient. A two-dimensional Euler run on grid 2 resulted in

an average value of CL = 0.6680 which requires the angle of attack in XFOIL to be

3.83◦. However, using this value for the different Reynolds numbers considered here

did not provide a better agreement than using the angle of attack to αXFOIL.

No tailoring of XFOIL (angle of attack, Ncrit value, changing correlations for sep-

arated flow) allowed us to obtain the same pressure and friction forces of the present

simulations. This indicates that the flows involved are significantly different from

the ones encountered in typical high Reynolds numbers aerodynamic applications for

which XFOIL has proven to be a reference for many years. In particular, some of

the cases studied here exhibit strong three-dimensional and unsteady effects which

are outside the domain of applicability of XFOIL. Hence, whenever comparisons with

XFOIL’s results are given, it is important to keep in mind that such a comparisons

provide merely a preliminary check.

3.6 Visualizing Vortical Structures: Q-Criterion

A systematic way of identifying vortical coherent structures in a flow is to use the

q-criterion proposed by Dubeif and Delcayre (2000) and defined as

q ≡ 1

2
(ΩijΩij − SijSij) , (3.10)
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where Ωij and Sij are the anti-symmetric and symmetric parts of the velocity gradient,

respectively, that is

Ωij ≡
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
and Sij ≡

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The q-criterion represents the balance between the rate of vorticity ΩijΩij and the

rate of strain SijSij. In the core of a vortex, q > 0 since vorticity increases as the

center of the vortex is approached. Thus, regions of positive q-criterion correspond

to vortical structures1. In the present work iso-surfaces of positive q are used to

visualize these structures, with the velocity gradients computed consistently with the

DG method (i.e. using the variables q) to preserve the order of accuracy.

3.7 Boundary Layer Analysis

In order to compute the boundary layer integral quantities, we first obtain the pseudo-

velocity profile by integrating the flow vorticity, namely

~u∗(x, n) =

∫ n

0

~ω × n̂ dn . (3.11)

Here ~u∗ denotes the pseudo-velocity, ~ω the flow vorticity vector, n̂ the unit vector

normal to the airfoil at the location considered, and n the local coordinate along n̂

with the wall located at n = 0. The reason for using this pseudo-velocity profile

instead of the flow velocity is that it always asymptotes outside the boundary layer,

even with strong curvature, thus making the edge of the boundary layer a well defined

location.

The edge ne of the boundary layer is then taken to be the location where both the

magnitudes of vorticity, |~ω|, and of vorticity’s normal variation, |∂~ω/∂n|, are below a

certain threshold, namely





|~ω|n < ε0|~u∗| ,∣∣∣∣
d~ω

dn

∣∣∣∣ n2 < ε1|~u∗| .
(3.12)

1 For an incompressible flow, the q-criterion can be written using the flow vorticity ω as

q =
1

4

(
ω2 − 2SijSij

)
=

1

2

∇2p

ρ

which shows the relation to the low pressure region at the center of a vortex.
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The edge velocity is then ~u∗e = ~u∗ (ne) and has the magnitude ue = |~u∗e|. The values

ε0 = 0.01 and ε1 = 0.1 were found to allow for a robust and systematic detection of

the boundary layer edge for the simulations reported in the present work.

Local streamwise and cross-flow unit vectors are then defined as, respectively,

ŝ1 ≡ ~u∗e/ue and ŝ2 ≡ ŝ1 × n̂ . (3.13)

Thus, the streamwise and cross-flow velocity profiles are respectively given by

u1(x, n) = ~u∗(x, n) · ŝ1 and u2(x, n) = ~u∗(x, n) · ŝ2 . (3.14)

The boundary layer streamwise displacement and momentum thicknesses are then

δ∗1 =

∫ ne

0

(
1− u1

ue

)
dn (3.15)

θ11 =

∫ ne

0

(
1− u1

ue

)
u1

ue
dn (3.16)

with the streamwise shape factor

H11 = δ∗1/θ11 . (3.17)

Note that the boundary layer analysis relies on quantities at points along lines

normal to the foil’s surface. These are obtained by interpolating within the grid’s

tetrahedral elements in a manner consistent with the order of the polynomials being

used in order to preserve the accuracy of the method. Moreover, as many stations

along the foil chord are employed as there are unique grid nodes, and about 100 points

inside the boundary layer along the normal are taken.

3.8 Transition Mechanism

In order to identify which mechanism is responsible for transition to turbulence, we

compute the fluctuating streamwise pseudo-velocity

u′1(x, t) = u1(x, t)− u1(x) ,

in which the over-line denotes a temporal average. The increase in perturbation am-

plitude of disturbances along the chord-wise direction is then quantified by computing
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the amplification A1 of streamwise perturbations at any location x along the chord,

that is

A1(x) =
1

ue(x)
√
ne(x)

√∫ ne

0

u′1
2 dn . (3.18)

The amplification factor N1 of the streamwise perturbations is then

N1(x) = ln

(
A1(x)

A10

)
, (3.19)

in which A10 is the amplification at the onset of transition, or equivalently

eN1 =
A1(x)

A10

.

Similarly, the amplification of cross-flow instabilities can be assessed by computing

A2(x) =
1

ue(x)
√
ne(x)

√∫ ne

0

u′2
2 dn (3.20)

to which corresponds the cross-flow amplification factor

N2(x) = ln

(
A2(x)

A20

)
. (3.21)

3.9 Transition Model

When the growth of unstable TS waves is the mechanism that drives transition to

turbulence, the location where transition takes place can be predicted by following

the growth of the amplification factor N of disturbances. As was discussed in Section

2.5.2, the successful eN method relies on this idea but are not easily coupled with

Navier-Stokes codes.

We are interested in devising a way to predict transition in Navier-Stokes codes

without having to resolve all the flow features that are responsible for the breakdown

to turbulence. In other words, we wish to be able to predict transition with compu-

tational grids that are much coarser than what LES and DNS require. In particular,

we are looking for a transition prediction technique that can be efficiently coupled

with RANS type codes.

A way to achieve this goal is to introduce an additional equation to be solved in
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RANS simulations which accounts for transition. M. Drela has proposed2 the simple

idea of tracking the amplification factor N of disturbances within the boundary layer

through a transport equation, which can be coupled with standard turbulence models

through either a trip term, or a production-limiting coefficient, based on N . This

approach, as proposed by M. Drela, is summarized here.

The equation for the amplification factor N has the form of a standard transport

equation and reads

∂N

∂t
+∇s · (~ucN) = νN∇2

sN +
|~uc|
θ11

f (H11, Reθ11) , (3.22)

in which θ11 and H11 are the streamwise momentum thickness and shape factor,

respectively, computed through the boundary layer analysis, and Reθ11 the Reynolds

number based on θ11. Note that N is a function of time and of the local streamwise

and cross-flow directions, that is N = N(s1, s2, t). The convection velocity of unstable

waves, ~uc, is taken to be a fraction of the boundary layer edge velocity, that is

~uc ≡ kc ~ue (3.23)

for 0 < kc ≤ 1. The symbol ∇s represents the surface gradient operator

∇s ≡ ŝ1
∂

∂s1

+ ŝ2
∂

∂s2

. (3.24)

The left-hand-side of the transport equation (3.22) accounts for convection, and

the first term on the right-hand-side represents diffusion through a viscosity coefficient

νN which provides stabilization and can be expressed in a manner consistent with

dimensional analysis as

νN = εN |~uc|∆grid , (3.25)

where ∆grid is a measure of grid spacing and εN has a small non-dimensional value.

The source term (second term on the right-hand side) models the growth of streamwise

TS disturbances and the function f (H1, Reθ) represents the eN envelope proposed by

Drela and Giles (1987), namely

f (H11, Reθ) =
dN

dReθ
(H11)

m(H11) + 1

2
`(H11) (3.26)

in which the functions dN/dReθ, m, and ` are given by empirical correlations.

2personal communication during the fall 2006
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Convective eN Transition Model

Normal Coordinate along snake:

dn = d!" · n̂

Pseudo-velocity profile:

!u(n) =
∫ n

0
!ω × n̂ dn

Edge location ne definition:

|!ω| n < ε0|!u|
and |d!ω/dn|n2 < ε1 |!u|

Edge velocity:

!ue = !u(ne) , ue ≡ |!ue|

Streamwise, Transverse unit vectors:

ŝ1 = !ue/ue

ŝ2 = ŝ1 × n̂

Streamwise, Crossflow profiles:

u1(n) = !u(n) · ŝ1

u2(n) = !u(n) · ŝ2

Integral thicknesses, parameters:

δ∗
1 =

∫ ne

0

(
1 − u1

ue

)
dn θ11 =

∫ ne

0

(
1 − u1

ue

)
u1

ue
dn

H11 =
δ∗
1

θ11
Reθ =

ue θ11

ν

Surface gradient operator:

∇S = ŝ1

∂

∂s1

+ ŝ2

∂

∂s2

Convection velocity:

!uc = k !ue , 0 < k ≤ 1

Transport equation for N(s1, s2, t):

∂N

∂t
+ !uc · ∇SN =

|!uc|
θ11

f(H11, Reθ)

Internal boundary condition:

N = 0 on outflow cell with all !uc · n̂S > 0

Modified SA trip term, applied over 0 ≤ n ≤ ne:

ft1 = c′
t1 (1 − fv1)

[
1 + tanh

N−Ncrit

∆N

] [
1 − n

ne

]

!

dn
dl

n
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Figure 3-2: Expected streamwise evolution of amplification factor N , trip term for
SA model ft1 , and model variable ν̃. [Figure by M. Drela]

The boundary condition for the transport equation sets N = 0 at any outflow

cell, that is on any element for which ~uc · n̂ > 0 on all its faces of outward normal n̂.

This is actually an initial condition which in practice sets zero amplification at the

stagnation point, from which point on the amplification growth is tracked.

The transition equation (3.22) can be coupled with the SA RANS turbulence

model of Spalart and Allmaras (1994) by setting the trip term to

ft1 = c′t1 (1− fv1)
[
1 + tanh

N −Ncrit

∆N

] [
1− n

ne

]
(3.27)

when the local normal coordinate n is in the range [0, ne]. The SA model consists

on an equation for the model variable ν̃ which is related to the eddy viscosity. A

schematic of the expected streamwise evolutions of N , ft1 , and ν̃ can be seen in

Figure 3-2. Note that the form of (3.27) ensures that the trip term is only effectively

active over a region close to the location where N reaches the critical amplification

factor Ncrit.

This approach has the disadvantage of using boundary layer integral parameters,

which can be difficult to obtain in unstructured codes. However, it does rely on a

systematic and accurate way to determine the boundary layer edge (see Section 3.7)

and can be easily coupled with standard turbulence models for RANS simulations.

Cross-flow instabilities could be treated in the same way, and one could have a

two-equation transition model with equations for the amplification factors NTS and

NCF of TS waves and cross-flow disturbances. However, no correlation exists which
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could be used as a source term to represent the growth of cross-flow waves. One

might instead attempt to find a correction for the streamwise source (3.26) that would

account for the influence of the boundary layer cross-flow velocity on the stability of

the streamwise velocity profile and thus model mixed transition. This is however

outside the scope of the present research.
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Chapter 4

Flow Around an Infinite Wing

In the present chapter, results are presented for the flow around a stationary infinite

SD7003 wing at an angle of attack of 4◦, for Reynolds numbers of 10,000, 22,000,

and 60,000 with a free-stream velocity perpendicular to the leading edge line. For

each case, a grid study is performed in order to ensure that the average quantities are

converged, significant flow features (instantaneous and average) are described, and

the average boundary layer on the upper surface of the wing is analysed.

As expected, the chord-wise extent of separation decreases while both separation

and transition move upstream as the Reynolds number is increased. Some compar-

isons with previously published results are provided, and it is established that the

transition that takes place along the laminar separation bubble at Re = 22, 000 and

Re = 60, 000 is a natural one resulting from the growth of linear Tollmien-Schlichting

waves. Sections 4.1–4.3 constitute the contents of a journal paper that has been

accepted for publication (Uranga et al., 2010). An additional section looks at the

N -factor evolution predicted by the proposed transition model equation.

4.1 Laminar Regime: Re = 10, 000

The first case considered is the flow at a Reynolds number of 10,000. In this regime,

the flow is found to be fundamentally two-dimensional with little variation along the

span-wise direction and periodic vortex shedding. Comparison is made with a two-

dimensional simulation performed on a grid with the same resolution as a span-wise

plane of the three-dimensional grid 2. While the instantaneous forces of Figure 4-1

differ slightly in magnitude, with smaller amplitudes for the three-dimensional case

due to three-dimensional alleviation, the shedding period and average values are es-
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Figure 4-1: Time variation of lift (left) and drag (right) coefficients at Re = 10, 000
on grid 2: comparison of 2D and 3D simulations.

Figure 4-2: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 10, 000 on grid 2: comparison of 2D and 3D simulations.

Table 4.1: Average flow results at Reynolds 10,000.

Source
Separation Transition Reattachment

CL CDxsep/c xtr/c xr/c

XFOIL at 3.72◦, Ncrit = 7 0.3543 - - 0.2711 0.04578

grid 1 0.3658 0.9371 - 0.3824 0.04999
difference with grid 2 2.8% −0.1% - 2.2% 0.64%

grid 2, 2D 0.3451 0.9384 - 0.3755 0.04978
difference with grid 2 −3.0% 0% - 0.32% 0.22%

grid 2 0.3557 0.9384 - 0.3743 0.04967
difference with XFOIL 0.39% - - 38% 8.5%

76



sentially the same. The average lift coefficient is 0.3743, the average drag coefficient

is 0.04967, while the average span-wise force coefficient is of the order of 10−6. The

difference in lift and drag coefficients of the two-dimensional simulations relative to

the three-dimensional run is less than 0.32% and 0.23%, respectively. Furthermore,

the 2D and 3D curves for average pressure and chord-wise skin friction coefficients

are undistinguishable as can be seen in Figure 4-2.

Note that the force coefficients are those of the time-averaged flow, and not exactly

equal to the average of the force time variations; that is, the flow time average is

computed first and then the forces of that time-averaged flow are evaluated. The

difference in values between these two ways of obtaining force averages is usually

insignificant (a couple percent or less). We choose this approach so as to be consistent

with the rest of the analysis (wall stresses, boundary layer quantities) which considers

the time-averaged flow. Furthermore, this is closer to what would be obtained from a

Figure 4-3: Time variation of lift (left) and drag (right) coefficients at Re = 10, 000:
comparison between grids 1 and 2. The dotted horizontal line indicates the average
values for grid 2.

Figure 4-4: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 10, 000 on grid 2: comparison between grids 1 and 2.
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Figure 4-5: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 10, 000 on grid 2. The dashed lines give XFOIL predictions at 3.72◦

angle of attack, Ncrit = 7.

RANS simulation, towards which the transition model we start developing is targeted.

The effect of grid resolution is assessed by comparing the results obtained on

grids 1 and 2. No significant difference is observed on average quantities, and the

pressure and skin friction coefficient plots for the two grids fall on top of each other

(Figure 4-4), while the average lift and drag coefficients for grid 1 differ by only 2.2%

and 0.64%, respectively, from those for grid 2. On the other hand, there is a small

but appreciable difference in the time history of the forces of Figure 4-3. Thus, grid

2 has sufficient resolution to capture the mean flow characteristics at Re = 10, 000

even though the time-varying features are not fully accounted for.

Furthermore, undistinguishable pressure and skin friction curves are obtained

when performing a spatial average over 10 span-wise planes instead of over 20 gives,

or when averaging over 100 solutions instead of over 200. The statistics obtained with

200 solutions and 20 span-wise planes at this regime are thus properly converged.

Figures 4-5 shows the average pressure and chord-wise skin friction coefficients,

together with the results predicted by XFOIL (Drela, 2002) at an angle of attack

of 3.72◦ as justified in Section 3.5. The similarity with XFOIL provides a good

check for the present simulations, but the two approaches may not correspond to

precisely the same farfield conditions. First, the angle of attack correction is only

an approximation. Furthermore, the critical amplification factor, Ncrit, at which

transition is set to occur (a user-defined parameter in XFOIL) is correlated to the

level of free-stream disturbances, and it is unclear what the value for a simulation

should be. In the present case, setting Ncrit to 4.6 in XFOIL results in a match in

transition location.

The iso-surfaces of q-criterion of Figure 4-8 show that coherent vortical structures
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Figure 4-6: Span-wise vorticity at Re = 10, 000 with grid 2: instantaneous on middle
plane (top), instantaneous span-wise average (middle), and average (bottom) con-
tours.

Figure 4-7: Average streamlines and contours of velocity magnitude at Re = 10, 000
with grid 2.
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Figure 4-8: Instantaneous (left) and time average (right) iso-surfaces of q-criterion at
Re = 10, 000 with grid 2.

Figure 4-9: Boundary layer average streamwise displacement and momentum thick-
nesses (left), and shape factor (right) evolution along the chord-wise direction at
Re = 10, 000 with grid 2. The dashed lines give XFOIL predictions at 3.72◦ angle of
attack, Ncrit = 7.

are not present upstream of the trailing edge but only in the wake. Furthermore, the

instantaneous iso-surfaces have a straight cylindrical shape with no variation along the

span-wise direction thus indicating that the wake structures remain two-dimensional.

At this Reynolds number, the boundary layer separates at around 36% of the

chord from the leading edge, and does not reattach. This can be seen on the friction

coefficient distribution of Figure 4-5, on the instantaneous and average span-wise

vorticity contours as shown in Figure 4-6, and on the average stream-lines shown in

Figure 4-7. Furthermore, the flow structures are all relatively large with only pairs

of well-defined vortices being shed (see Figure 4-6).

The curves of streamwise displacement thickness, δ∗1, momentum thickness, θ11,

and shape factor, H11 = δ∗1/θ11, of Figure 4-9 confirm that transition to turbulence

occurs only at 94% of the chord. Furthermore, the curves for two-dimensional simu-

lations and for grid 1 are undistinguishable from those of grid 2. The main difference
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between the boundary layer evolution as predicted by XFOIL (dashed lines in the

figures) and the one resulting from the present ILES is that the latter predicts a

transition to turbulence just upstream of the trailing edge as evidenced by the peak

in shape factor, while the former does not. However, the shape factor peak in the

ILES is very close to the trailing edge and might not represent an actual transition

but rather a lack of resolution.

4.2 Low Transitional Regime: Re = 22, 000

4.2.1 Three-Dimensionality

The flow at Re = 22, 000 is now considered. As is shown later, the flow at this

Reynolds number transitions to turbulence, and since turbulence is a fundamentally

three-dimensional phenomena, we expect that a two-dimensional simulation would

not be able to capture the important flow features. This is confirmed by comparing

the three-dimensional results obtained on grid 2 with a two-dimensional simulation

using, as previously, a grid with the same resolution as a span-wise plane.

With respect to the instantaneous force coefficients of Figure 4-10, it can be noted

that the lift and drag force coefficients for the two-dimensional case have significantly

larger magnitudes (by close to a factor of three) than those of the three-dimensional

case. This is of course due to three-dimensional alleviating effects.

The pressure and skin friction profiles of Figure 4-11 also confirm the signifi-

cance of three-dimensional effects, with the friction being more sensitive than the

pressure, while largest discrepancies occur near transition (x/c ≈ 0.7). However, a

two-dimensional flow approximation yields separation, transition, and reattachment

locations, as well as lift and drag coefficients, which are relatively close (less than 10%

Table 4.2: Average flow results at Reynolds 22,000.

Source
Separation Transition Reattachment Bubble

CL CDxsep/c xtr/c xr/c Length

XFOIL at 3.60◦, Ncrit = 7 0.2489 0.7784 0.9494 0.7005c 0.5193 0.03772
grid 1 0.2744 0.6853

- -
0.6359 0.04309

difference with grid 2 15% 0.60% −1.5% 0.87%
grid 2, 2D 0.2144 0.6602 0.9554 0.7410c 0.6707 0.04510
difference with grid 2 −10% −3.1% 1.9% 6.0% 3.9% 5.6%
grid 2 0.2386 0.6812 0.9379 0.6993c 0.6456 0.04272
difference with grid 2, p = 4 6.6% 0.95% 0.011% −2.0% −0.031% −0.37%
grid 2, p = 4 0.2239 0.6748 0.9378 0.7139c 0.6458 0.04288
difference with XFOIL −10% −13% −1.2% 1.9% 24% 14%
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Figure 4-10: Time variation of lift (left) and drag (right) coefficients at Re = 22, 000
on grid 2: comparison of 2D and 3D simulations.

Figure 4-11: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 22, 000 on grid 2: comparison of 2D and 3D simulations.

off) to the three-dimensional solution values as indicated by the numbers in Table 4.2.

4.2.2 Spatial Resolution: Grid Comparisons

In order to assess how much spatial resolution is needed at Re = 22, 000, the flow is

computed with three different resolution levels: grid 1 with p = 3, grid 2 with p = 3,

and grid 2 with p = 4. The curves of average pressure coefficient and average skin

friction coefficient profiles for the three levels are indistinguishable as can be seen

in Figure 4-13. On the other hand, the instantaneous force histories of Figure 4-12

differ but have approximately the same magnitudes. They depict a turbulent signal

and indicate an aperiodic vortex shedding with various scale sizes and frequencies.

Furthermore, the span-wise force coefficient, while small (of the order of 10−4), reveals

the presence of span-wise flow motions. The average separation, transition, and
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reattachment locations, as well as the lift and drag coefficients of the mean flow are

given in Table 4.2.

The coarsest mesh employed (grid 1) is unable to provide an accurate enough

solution for the flow to reattach to the wing. Note that the difference of 6.6% in

separation location on grid 2 between results at p = 3 and p = 4 might partly be

explained by the uncertainty in determining the separation location from the friction

coefficient curve: the curve is close to horizontal near Cf = 0 and the value of

xs/c is linearly interpolated between two chord-wise locations. If one uses the shape

factor to determine separation (taking it at a value of 4), the difference in location is

significantly reduced; this approach is adopted for the swept-wing analysis.

Furthermore, the boundary layer chord-wise variation of streamwise displacement

thickness and momentum thickness are not significantly different on grid 2 between

solutions at p = 3 and at p = 4. However, the shape factor does show a discrepancy

but only in the separation region (H11 > 4) and not in the transition location as

can be seen in Figure 4-14. Thus, the results obtained on grid 2 with p = 3 can

Figure 4-12: Time variation of lift (top left), drag (top right), and span-wise (bot-
tom) force coefficients at Re = 22, 000: comparison of results with different spatial
resolutions. The dotted horizontal line indicates the average values for grid 2, p = 4.

83



Figure 4-13: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 22, 000: comparison of results with different spatial resolutions.

Figure 4-14: Boundary layer average streamwise displacement and momentum thick-
nesses (left), and shape factor (right) evolution along the chord-wise direction at
Re = 22, 000: comparison of results with different spatial resolutions.

be considered to be grid-converged with respect to global average quantities—with

the exception of the peak in shape factor which is particularly hard to resolve—and

this mesh is characteristic of the spatial resolution needed to resolve the mean flow

features at Re = 22, 000.

4.2.3 Results with Grid 2, p = 3

At this Reynolds number of 22,000, the separation bubble is clearly visible on the

Cp profile of Figure 4-15 with the characteristic plateau. From the skin friction

coefficient, separation is located at around 23% of the chord. Transition takes place

after separation, at around 68% as measured from the peak in the boundary layer

shape factor of Figure 4-20; this is also made visible by the velocity correlations of

Figure 4-17 which show significant velocity fluctuations on the downstream part of
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Figure 4-15: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 22, 000 on grid 2. The dashed lines give XFOIL predictions at 3.60◦

angle of attack, Ncrit = 7.

the foil. Finally, the flow reattaches at around 94% of the chord, thus forming a long

laminar separation bubble (LSB) which encompasses more than 70% of the wing’s

chord. This LSB is made visible by the average streamlines of Figure 4-18.

Contrarily to what was observed at Re = 10, 000, the instantaneous vorticity con-

tours of Figure 4-16 contain a significant amount of small, high-frequency structures,

and the flow is not anymore restricted to pairs of shed vortices. As already pointed

out, the flow at this Reynolds number is three-dimensional and contains structures

that vary in the span-wise direction. This can be seen in the instantaneous iso-surfaces

of q-criterion and of span-wise vorticity of Figure 4-19: the iso-surfaces are not cylin-

drical and reveal significant span-wise variations. The presence of small variations in

average q-criterion past transition might be due to traces of high-frequency structures

and a time average which is not fully converged.

The comparison with XFOIL’s predictions show some disagreement—see the pres-

sure and friction profiles of Figure 4-15 and the boundary layer integral thickness

evolutions of Figure 4-20—but the same remarks made for the Re = 10, 000 case

hold here, and the comparisons provide merely a consistency check. Transition, for

instance, can be made to match by setting Ncrit = 5.2 in XFOIL. Furthermore, the

flow is three-dimensional and beyond the modeling capabilities of XFOIL.
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Figure 4-16: Span-wise vorticity at Re = 22, 000 with grid 3, p = 4: instantaneous on
middle plane (top), instantaneous span-wise average (middle), and average (bottom)
contours.

Figure 4-17: Non-dimensional chord-wise transverse velocity correlations u′xu
′
z /U

2
∞

at Re = 22, 000 with grid 2, p = 3.
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Figure 4-18: Average streamlines and contours of velocity magnitude at Re = 22, 000
with grid 3, p = 4.

Figure 4-19: Instantaneous (left) and average (right) iso-surfaces of q-criterion (top)
and span-wise vorticity (bottom) at Re = 22, 000 with grid 3, p = 4.
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Figure 4-20: Boundary layer average streamwise displacement and momentum thick-
nesses (left), and shape factor (right) evolution along the chord-wise direction at
Re = 22, 000 with grid 2. The dashed lines give XFOIL predictions at 3.60◦ angle of
attack, Ncrit = 7.

4.2.4 Transition Mechanism

A close look at the boundary layer in the average flow provides insight into the

transition process. From the shape factor of Figure 4-20, the transition location

is clearly identified by the peak, while the separated flow can be identified as the

region where H11 is larger than 4. The left plot of Figure 4-21 shows average profiles

of streamwise pseudo-velocity at several chord-wise locations x/c ∈ [0.1, 0.3], which

resemble the profiles over a flat plate by construction of the pseudo-velocity through

equation (3.11).

As explained in Section 3.8, the transition mechanism can be determined by con-

sidering the profiles of fluctuating streamwise pseudo-velocity, u′1
2/u2

e, of Figure 4-21.

Each profile’s shape is consistent with a superposition of Tollmien-Schlichting (TS)

waves whose amplitudes increase along the chord-wise direction. Note also that the

maximum moves away from the wall as it is convected downstream. The amplitude

increase is quantified through the streamwise amplification factor N1 of Figure 4-22

which increases linearly along the chord upstream of separation. This analysis clearly

proves that transition is the result of the growth in TS waves, and hence that we are

in the presence of a natural transition—not a bypass transition.

The chord-wise transition location determined previously from the shape factor

(xtr/c = 0.68) can be used to observe that, according to the N1(x/c) curve, transition

takes place at a critical amplification of N1 = 4.6. This is close to the value of 5.2

required for XFOIL at 3.60◦ angle of attack to give agreement with respect to the

transition location.

Note that the fluctuations observed in N1 for x/c > 0.5 indicate that the temporal
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Figure 4-21: Boundary layer average profiles of streamwise pseudo-velocity u1/ue

(left), and fluctuating streamwise pseudo-velocity u′1
2/u2

e (right), at different chord-
wise locations x/c ∈ [0.1, 0.3] at Re = 22, 000 with grid 2.

Figure 4-22: Amplification factor N1 of streamwise pseudo-velocity perturbations for
the flow at Re = 22, 000 with grid 2. The dashed line gives XFOIL predictions at
3.60◦ angle of attack, Ncrit = 7.

average needs to be carried out over a larger number of time steps to average the high-

frequency structures present past transition. This lack of statistical convergence is

mostly evident for boundary layer considerations and hence only observed in Figures

4-20 and 4-22, and also in the small variations seen in the average q-criterion iso-

surfaces of Figure 4-19. However, the average process of disturbance growth and

transition is well captured and described with these statistics.

4.3 High Transitional Regime: Re = 60, 000

As mentioned in the background section, the flow around the SD7003 at 4◦ angle of

attack and Reynolds number of 60,000 has been studied by several groups. This case

is considered in detail here, in particular the three-dimensional effects, the required
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resolution for ILES with DG, and the influence of span length and of time step on

the average results. The transition mechanism is also established.

4.3.1 Three-Dimensionality

As expected, at Re = 60, 000 the flow cannot be approximated by a two-dimensional

simulation. The magnitude of force fluctuations in Figure 4-23 from a two-dimensional

simulation are about a factor of 9 times larger than the three-dimensional results:

three-dimensional alleviation is even more significant than at Re = 22, 000. Fur-

thermore, while at a Reynolds number of 22,000 a two-dimensional simulation was

able to capture the separation bubble, at Re = 60, 000 no bubble is present in two-

dimensional runs as made evident in the pressure and skin friction profiles of Fig-

ure 4-24: there is no plateau in average Cp but only a close to linear pressure rise

along most of the upper surface.

Figure 4-23: Time variation of lift (left) and drag (right) coefficients at Re = 60, 000
on grid 2: comparison of 2D and 3D simulations.

Figure 4-24: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 60, 000 on grid 2: comparison of 2D and 3D simulations.
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Table 4.3: Average flow results at Reynolds 60,000.

Source
Separation Transition Reattachment Bubble

CL CDxsep/c xtr/c xr/c Length

grid 1 0.2907 0.4119 0.5396 0.2489c 0.5997 0.02058
difference with grid 2 19% −20% −9.6% 29% 0.51% −6.4%
grid 2, 2D 0.2589 0.4295 0.6213 0.3624c 0.5730 0.02097
difference with grid 2 6.1% −16.5% 4.1% 2.7% −4.9% −4.6%
grid 2 0.2440 0.5145 0.5967 0.3527c 0.6028 0.02198
difference with grid 2, p = 4 18% −3.6% −10% −23% −1.5% −8.7%
grid 2, span 0.3c 0.2306 0.5146 0.6233 0.3927c 0.6021 0.02196
difference with grid 2 −5.5% 0.019% 4.5% 11% −0.12% −0.091%
grid 2, ∆t∗1 0.2424 0.5146 0.6124 0.3700c 0.6033 0.02200
difference with grid 2 −0.66% 0.019% 2.6% 4.9% 0.083% 0.091%
grid 2, p = 4, 2D 0.2544 0.4930 0.5811 0.3267c 0.5458 0.02142
difference with grid 2, p = 4 23% −7.6% −13% −29% −11% −11%
grid 2, p = 4 0.2069 0.5335 0.6658 0.4589c 0.6122 0.02407
difference with grid 3, p = 4 −0.34% −1.1% −0.48% −0.54% 0.39% 0.042%
grid 3, p = 4 0.2076 0.5397 0.6690 0.4614c 0.6098 0.02406

4.3.2 Spatial Resolution: Grid Comparisons

The spatial resolution required to capture the main flow features is assessed by com-

paring the results with several grids. We use grids 1 and 2 with polynomials of order

3 (p = 3), as well as grids 2 and 3 with p = 4. The distance between the wall

and the first high-order node along the upper surface of the foil on grid 2, p = 3, is

approximately ∆y ≈ 4 × 10−4 c. At x/c = 0.1 where Cf ≈ 0.01, this corresponds

to approximately ∆y+ ≈ 2 wall units, with the usual definition y+ = uτy/ν for

uτ =
√
τw/ρ =

√
Cf/2 U∞.

The comparison of force histories and of average pressure and skin friction coeffi-

cients on the airfoil obtained with the different spatial resolution levels can be seen

in Figures 4-25 and 4-26. Grid 1 is unable to properly capture the separation bubble

and associated transition to turbulence, giving only a short LSB and forces that are

too small. With p = 3, grid 2 provides a relatively accurate average flow but forces

which are still too low, a delayed separation and too rapid transition thus resulting

again in an under-predicted bubble length. Finally, the magnitude of the temporal

evolution of forces, the average flow and boundary layer integral thicknesses obtained

on grid 2 with p = 4 and on grid 3 with p = 4 agree. Thus, grid 2 is able to provide

the required spatial resolution when polynomials of order p = 4 are employed.

4.3.3 Effect of Domain Span Length

In order to investigate what domain span length is required to simulate an infinite

wing with a span-wise periodic boundary condition while properly capturing the
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Figure 4-25: Time variation of lift (top left), drag (top right), and span-wise (bot-
tom) force coefficients at Re = 60, 000: comparison of results with different spatial
resolutions. The dotted horizontal line indicates the average values for grid 3, p = 4.

Figure 4-26: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 60, 000: comparison of results with different spatial resolutions.
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dominant flow structures, a domain with a span of 0.3 chords is considered in addition

to the 0.2c span used in all other simulations, with a grid identical to grid 2, p = 3,

except in the span-wise direction. To preserve the span-wise resolution, 3/2 times

more nodes are used along the span: thus, this grid has 6 elements in the span-wise

direction for 19 unique high-order nodes along the span, while grid 2 has 4 elements

and 13 unique nodes span-wise. In this way, we ensure that comparing results with

those on grid 2 reveals the effect of span length only, and ant differences are unrelated

to resolution.

The time evolution of forces of Figure 4-27 show similar amplitudes and shapes

for the two spans considered, even though the exact curves do not overlap, as ex-

pected for a turbulent flow and just as is observed when comparing different grids.

Furthermore, the curves of average pressure coefficient and skin friction coefficient

profiles of Figure 4-28 are undistinguishable between the two span lengths consid-

ered. However, small differences are observed in the boundary layer profiles as can

be seen in Figure 4-29, but the separation, transition, and reattachment locations

Figure 4-27: Time variation of lift (top left), drag (top right), and span-wise (bottom)
force coefficients at Re = 60, 000 on grid 2: comparison of grids with two different
span lengths.The dotted horizontal line indicates the average values for the 0.3c span.
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Figure 4-28: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 60, 000 on grid 2: comparison of grids with two different span lengths.

Figure 4-29: Boundary layer average streamwise displacement and momentum thick-
nesses (left), and shape factor (right) evolution along the chord-wise direction at
Re = 60, 000 with grid 2: comparison of grids with two different span lengths.

are essentially unchanged. A domain span of 0.2c is thus appropriate to capture the

main flow features in the simulation of an infinite wing as observed by Galbraith and

Visbal (2008).

4.3.4 Temporal Resolution

The use of an implicit time stepping procedure allows for the choice of large time

steps irrespective of stability considerations. However, one should still ensure that

the time resolution is sufficient to obtain accurate average quantities—even though

the instantaneous fields depend on which frequencies are captured.

A simulation on grid 2 with solutions saved every ∆t∗1 = 0.02 is performed in order

to assess whether the chosen value of ∆t∗0 = 0.05 can appropriately capture the mean

flow features. Note that the actual time step in the DIRK time stepping method is
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set to dt∗ = 0.01 for both, but the solutions are saved either every 5 or every 2 steps

for ∆t∗0 and ∆t∗1, respectively. Note also that we have not chosen a multiple of the

original time step ∆t∗0 in order to avoid any possible sub-harmonic locking. When

using the smaller time step ∆t∗1, statistics are computed over 500 steps (while 200

steps are used for ∆t∗0) in order to span the same time t∗ ∈ [15, 25]; this also provides

for a sense of the degree of convergence of the time-averaged fields and fluctuating

quantities which are now determined based on more steps.

As expected, the average pressure and friction profiles are not sensitive to the

temporal resolution change, and the curves of Cp and Cf of Figure 4-31 overlap.

Furthermore, while the boundary layer thicknesses and shape factor evolution do

not perfectly match between the runs at the two time steps, they are however very

close. As can be seen in Figure 4-32, the shape factor curves are almost identical

(maximum difference of 6.4% at transition), and the displacement and momentum

thicknesses do exactly overlap before transition with a maximum difference in the

Figure 4-30: Time variation of lift (left), drag (center), and span-wise (right) force
coefficients at Re = 60, 000 on grid 2: comparison of simulations saved every 5 time
steps (∆t∗0 = 0.05) and every 2 time steps (∆t∗1 = 0.02). The dotted horizontal line
indicates the average values for the latter.
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Figure 4-31: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 60, 000 on grid 2: comparison of simulations saved every 5 time steps
(∆t∗0 = 0.05) and every 2 time steps (∆t∗1 = 0.02).

Figure 4-32: Boundary layer average streamwise displacement and momentum thick-
nesses (left), and shape factor (right) evolution along the chord-wise direction at
Re = 60, 000 with grid 2: comparison of simulations saved every 5 time steps
(∆t∗ = 0.05) and every 2 time steps (∆t∗ = 0.02). The time averages are carried
out over 200 and over 500 instantaneous solutions, respectively.

first three quarters of the foil of 3.7% and 4.9% for displacement and momentum,

respectively. Separation, transition, and reattachment locations are unaffected. The

oscillations observed on the aft quarter of the foil for the lower time step indicate a

lack of statistical convergence of the averages computed over 200 steps, which is not

present in the curve of the lower time step for which averages are computed over 500

steps instead. Thus, we deem the temporal resolution of ∆t∗0 = 0.05 sufficient with

respect to average statistics, even though the small (high-frequency) boundary layer

structures would require more resolution to be fully accounted for.
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4.3.5 Effect of Averaging

In order to verify that turbulence statistics are properly converged, we compare the

results obtained by performing averages over 100 time steps (instantaneous solutions)

and over 200 steps. The average pressure and skin friction coefficients over the wing

shown in Figure 4-33 are undistinguishable, while there is a small difference in the

boundary layer thicknesses and shape factor of Figure 4-34 which is comparable to

that observed in Figure 4-32 when considering different temporal resolutions.

As mentioned in the methodology section, the average quantities are obtained by

computing a time average followed by a spatial span-wise average. For the latter, the

solution is first interpolated (to an order compatible with the polynomial order being

used so as to avoid interpolation errors) at 20 different planes perpendicular to the

span-wise direction, and these 20 interpolated solutions are then averaged. The use

of only 10 planes was tested and again provided results that compared with the use

of 20 planes in a manner similar to how the use of 100 steps compares with 200, as

can be seen in Figures 4-35 and 4-36.

Thus, in order to obtain proper averages, the use of 200 solutions and 20 span-wise

planes is deemed sufficient, in spite of the small fluctuations observed in the average

boundary layer integral lengths after transition. Only for the amplification factor

chord-wise evolution these statistics are inadequate, but still allowed us to observe

the development of TS waves as discussed in Section 4.3.7.

Figure 4-33: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 60, 000 on grid 2: comparison of averages over 100 and over 200
solutions.
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Figure 4-34: Boundary layer average streamwise displacement and momentum thick-
nesses (left), and shape factor (right) evolution along the chord-wise direction at
Re = 60, 000 with grid 2: comparison of averages over 100 and over 200 solutions.

Figure 4-35: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) at Re = 60, 000 on grid 2: comparison of averages over 10 and over 20 span-
wise planes.

Figure 4-36: Boundary layer average streamwise displacement and momentum thick-
nesses (left), and shape factor (right) evolution along the chord-wise direction at
Re = 60, 000 with grid 2: comparison of averages over 10 and over 20 span-wise
planes.
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4.3.6 Results with Grid 2, p = 4

Table 4.4 gives a comparison with previously published results at a Reynolds number

of 60,000, as well the mean lift and drag coefficients for the present simulations

with grid 2, p = 4. TU-BS corresponds to the PIV experiments at the Technical

University of Braunschweig Low-Noise Wind Tunnel (Radespiel et al., 2006), while

HFWT is from the PIV experiments at the Air Force Research Laboratory Horizontal

Free-Surface Water Tunnel (Ol et al., 2005); Visbal’s data is from an ILES with sixth-

order compact differences by Galbraith and Visbal (2008); Visbal et al. (2009). The

present results are well within variations between previously published works.

At Re = 60, 000, with a fifth-order method, a relatively coarse mesh (grid 2, p = 4)

with 1.8 million high-order nodes is able to accurately capture the average locations

of separation, transition, and reattachment, as well as the average pressure and skin

friction coefficient profiles along the foil which can be seen in Figure 4-37 together

with comparison curves for the data from XFOIL (Drela, 2002) and by Galbraith

and Visbal (2008); Visbal et al. (2009) who employ a well resolved grid with about

4.8 million nodes. The separation bubble is clearly visible in these profiles, with

separation occurring on average at 21% of the chord and reattachment at 67% in the

present simulations. As expected, the length of the LSB is significantly shorter (0.46c

compared to 0.72c) than at Re = 22, 000 due to a more rapid transition.

Contours of instantaneous and average span-wise vorticity are shown in Figure 4-

39, and reveal a large number of small structures created by turbulent motions past

the mid-chord. Average non-dimensional velocity correlations can be seen in Figure 4-

40 and illustrate the presence of transition to turbulence. This is verified by looking

at the displacement thickness, momentum thickness, and shape factor of the pseudo-

Table 4.4: Comparison of average results at Re = 60, 000 with grid 2, p = 4. TU-BS
(Radespiel et al., 2006) and HFWT (Ol et al., 2005) correspond to PIV experiments;
Visbal (Galbraith and Visbal, 2008; Visbal et al., 2009) is an ILES; the XFOIL pre-
dictions are obtained at 3.37◦ and Ncrit = 7.

Source
Separation Transition Reattachment Bubble

CL CDxsep/c xtr/c xr/c Length

TU-BS 0.30 0.53 0.62 0.32c - -
HFWT 0.18 0.47 0.58 0.40c - -
Visbal 0.23 0.55 0.65 0.42c - -
XFOIL 0.28 0.58 0.61 0.34c 0.5624 0.0176
present ILES 0.21 0.53 0.67 0.46c 0.6122 0.0241
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Figure 4-37: Average pressure coefficient (left) and streamwise skin friction coefficient
(right) at Re = 60, 000 on grid 2, p = 4. The dashed lines give XFOIL predictions at
3.37◦, Ncrit = 7, and the dot-dashed lines show ILES data of Galbraith and Visbal
(2008); Visbal et al. (2009).

Figure 4-38: Boundary layer average streamwise displacement and momentum thick-
nesses (left), and shape factor (right) evolution along the chord-wise direction at
Re = 60, 000 with grid 2, p = 4. The dashed lines give XFOIL predictions at 3.37◦

angle of attack, Ncrit = 7.

Table 4.5: Summary of average results at the three Reynolds numbers considered
with: grid 1, p = 3 for Re = 10, 000; grid 2, p = 3 for Re = 22, 000; grid 2, p = 4 for
Re = 60, 000.

Reynolds Separation Transition Reattachment Bubble
CL CDNumber xsep/c xtr/c xr/c Length

10,000 0.3557 0.9384 - - 0.3743 0.04967
22,000 0.2386 0.6812 0.9379 0.6993c 0.6456 0.04272
60,000 0.2069 0.5335 0.6658 0.4589c 0.6122 0.02407
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Figure 4-39: Span-wise vorticity at Re = 60, 000 with grid 2, p = 4: instantaneous on
middle plane (top), instantaneous span-wise average (middle), and average (bottom)
contours.

Figure 4-40: Non-dimensional chord-wise transverse velocity correlations u′xu
′
z /U

2
∞

at Re = 60, 000 with grid 2, p = 4.
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velocity profile (Figure 4-38). A sharp peak in shape factor reveals that transition to

turbulence occurs on average at 53% of the chord.

As shown earlier, three-dimensional structures are present at this Reynolds num-

ber due to turbulent motions; this is clearly visible in the instantaneous iso-surfaces

of q-criterion and span-wise vorticity of Figure 4-42. On the other hand, the average

surfaces are almost cylindrical showing that the average flow is close to converged.

Figure 4-41: Average streamlines and contours of velocity magnitude at Re = 60, 000
with grid 2, p = 4.

Figure 4-42: Instantaneous (left) and average (right) iso-surfaces of q-criterion (top)
and span-wise vorticity (bottom) at Re = 60, 000 with grid 2, p = 4.
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4.3.7 Transition Mechanism

Profiles of fluctuating streamwise pseudo-velocity, u′1
2/u2

e, can be seen on the left plot

of Figure 4-43, for chord-wise stations x/c ∈ [0.1, 0.3]. As for the Re = 22, 000 flow,

the profiles are consistent with a superposition of Tollmien-Schlichting (TS) modes,

and we observe an increase in perturbation amplitude along the chord-wise direction.

The average streamwise pseudo-velocity profiles resemble those at Re = 22, 000 of

Figure 4-21.

The growth of the streamwise amplification factor along the chord-wise direction

can be seen in Figure 4-44. As mentioned previously, the fluctuations observed from

the separation location on (x/c ≥ 0.24) indicate that the temporal averages need to be

carried out over a longer period of time. The dotted red line shows the amplification

factor of the single most energetic wave as predicted by XFOIL, while the blue line

for the present simulation is the result of the integration (3.18) and hence corresponds

to the compounded energy of all the waves; this explains why the XFOIL line gives

a smaller amplification factor at any given location. However, the slopes of the lines

for both cases are very similar, which confirms that the unstable modes are properly

captured even with the relatively coarse grid used.

Again, both the shape of the fluctuating streamwise pseudo-velocity profiles and

the spatial linear growth of the amplification factor indicate that the mechanism

of transition along the LSB for these low Reynolds number flows is a TS natural

transition.

Figure 4-43: Boundary layer average
fluctuating streamwise pseudo-velocity

profiles u′1
2/u2

e at different chord-
wise locations x/c ∈ [0.1, 0.3] at
Re = 60, 000 with grid 2, p = 4.

Figure 4-44: Amplification factor N1

of streamwise pseudo-velocity perturba-
tions for the flow at Re = 60, 000 with
grid 2, p = 4.
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Table 4.6: Disturbance amplification based on transition model for the three Reynolds
numbers considered. The columns ‘positive source’ and ‘positive N ’ give the location
where the value (source or N) becomes larger than 0.5% of its maximum; ‘slope of
N ’ gives the slope of the linear growth region.

Reynolds
Number

Transition
xtr/c

Positive
Source

Positive N N at
Transition

Slope of N

10,000 0.9384 0.2773 0.3059 4.4 7.2
22,000 0.6812 0.1631 0.1798 6.8 13.8
60,000 0.5335 0.1126 0.1339 9.4 25.9

4.4 Use of the Transition Model Equation

Having determined that transition to turbulence along the LSB is due to the growth

of TS waves, we compute the evolution of the amplification factor N using the tran-

sition model equation (3.22) to verify that it predicts the development of instability

correctly.

The details of how the transition model is to be used with any computational

approach is described in Section 3.9. In the present work, the model equation is

discretized using the same DG procedure as the governing equations (see Section 3.2)

which provides a stable discretization of convection, and hence no diffusion term is

required. Furthermore, for the cases of a stationary wing, we are interested in the

average flow. Therefore, we solve the steady state equation

∇s · (~ucN) =
|~uc|
θ11

f (H11, Reθ) , (4.1)

in which the required inputs are computed as part of the boundary layer post-

processing from the average flow, and (3.24) defines the surface gradient operator

∇s ≡ ŝ1 ∂/∂s1 + ŝ2 ∂/∂s2. Note that the convective velocity is taken to be ~uc = kc ~ue

and that the choice of kc has no influence on the final (steady) evolution of N pre-

dicted by (4.1). For each Reynolds number, the flow at the level of spatial refinement

that was shown to be required is used in this section: grid 1, p = 3 for Re = 10, 000;

grid 2, p = 3 for Re = 22, 000; and grid 2, p = 4 for Re = 60, 000.

The edge location for the boundary layer on the upper surface can be seen in

Figure 4-45 for the three Reynolds numbers considered; the strong variations on the

back of the foil show that averages still contain some fluctuations due to the presence

of small, high-frequency structures which require many time steps to compute their
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Figure 4-45: Location of the boundary layer edge for the three Reynolds numbers
considered.

mean behavior—this being specially true at higher Reynolds numbers. Figure 4-46

shows the chord-wise evolution of edge velocity and source term (right-hand-side of

(4.1)), where again some fluctuations are still present on the back of the foil.

The growth of the N -factor obtained from the transition model equation (4.1) is

shown in Figure 4-47. For comparison, Figure 4-48 shows the amplification factors

obtained by integrating the streamwise pseudo-velocity perturbations through equa-

tion (3.18) for the three Reynolds numbers studied, together with XFOIL predictions

(straight dotted lines), as had been plotted in Figures 4-22 and 4-44.

As required, when the Reynolds number increases the disturbances are ampli-

fied earlier (N starts increasing farther upstream) and faster (larger slope). Based

on the boundary layer post-processing, transition takes place at xtr/c = 0.6812 for

Re = 22, 000, and this location corresponds to N = 6.8 in the curve of Figure 4-47,

while at Re = 60, 000 transition is observed at xtr/c = 0.5335 where N = 9.4, as

indicated in Table 4.6.

Based on the location where the source term stops being zero, disturbances are am-

plified (positive source) starting at x/c = 0.1631 and at x/c = 0.1126 forRe = 22, 000

and Re = 60, 000 respectively, while the N factor starts increasing at x/c = 0.1798

and at x/c = 0.1339, respectively for these two flows. The location where either the

source, or N , becomes positive has been taken to be where its value is larger than

0.5% of its maximum.

The evolution of the N -factor predicted by the transition model equation has the

proper shape: as the Reynolds number is increased, the linear growth factor increases;

moreover, it reflects how the disturbances start growing exponentially at a chord-wise

location that gets closer and closer to the leading edge as Re is increased. However,

there is no common value of N for the different Reynolds numbers at which transition
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Figure 4-46: Chord-wise evolution of boundary layer edge velocity (left) and source
term |~uc|f (H11, Reθ) /θ11 with kc = 0.8 (right) for the three Reynolds numbers con-
sidered.

Figure 4-47: Evolution of N -factor based on steady transition model equation for the
three Reynolds numbers considered.

Figure 4-48: Evolution of streamwise amplification factor N1 based on integration of
pseudo-velocity perturbations for the three Reynolds numbers considered; the dashed
straight lines give XFOIL’s predictions.
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can be set to take place, i.e. no critical amplification Ncrit prevails. Furthermore,

there does not seem to be any simple correlation linking the flow Reynolds number

to the value of N at transition, nor to the linear slope of N , nor to the location of

growth onset in the source term. The quantitive aspects of the transition prediction

will be determined by the specific coupling of the transition model equation with a

given RANS turbulence model. In particular, the N evolution is to be incorporated

into either a trip term (with the SA model for instance) or a turbulence suppression

term, the calibration of which needs to be investigated.

Note that the fluctuations in the N evolution (which result from fluctuations in ue

and the source term) are not expected to influence the transition location triggered

by coupling the N transport equation with turbulence models, since what happens

downstream of the location where N reaches the critical value for transition has an

insignificant impact. It is trivial to implement a low pass filter to obtain smoother

evolutions of the source term and hence of N even from an only partially-averaged

flow.

The plots in Figure 4-49 show the results obtained when applying a low-pass-

filter smoothing to the edge velocity and source term for the Re = 60, 000 case. The

smoothed evolution, < a(x/c) >, is computed by combining the original (unfiltered)

variable, a(x/c), with the filtered variable, ã(x/c), through

< a >= (1− κ) a+ κ ã

using the ramping factor

κ =
1 + tanh

(
x−x0
dwc

)

2
.

The parameter dw controls the width over which the damping occurs, while x0/c

defines the center of the ramp along the chord. Here, we set dw = 20 and x0/c = 0.4,

and used a first-order Butterworth low-pass filter with normalized cut frequency of

0.1 to obtain ã and the plots of Figure 4-49.
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Figure 4-49: Chord-wise evolution of boundary layer edge velocity (top left), source
term |~uc|f (H11, Reθ) /θ11 with kc = 0.8 (top right), and N -factor (bottom) for
Re = 60, 000: comparison of results with and without filtering (smoothing) of
edge velocity and source term.
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Chapter 5

Effects of Cross-Flow on Transition

As described in the background Section 2.4, when a wing is swept with respect to

the free-stream flow direction, a cross-flow velocity component appears within the

boundary layer which can interact and destabilize the streamwise flow. In order for a

transition model to be applicable to flows over swept wings, it would need to integrate

this influence. To further contribute to the understanding of low Reynolds number

aerodynamics, the present chapter investigates the effects of the boundary layer cross-

flow on transition which have so far remained largely unexplored for the low Reynolds

number regime.

5.1 Swept Infinite Wings

5.1.1 Approach

A rectangular, infinite, SD7003 wing is again used but this time the free-stream

velocity has a non-zero component in the direction of the leading edge line. With x

and y the chord-wise and span-wise directions respectively, the velocity imposed at

the farfield of the domain is given by

~U∞ =




cosα

tan Λ

sinα


 (5.1)

in which α is the angle of attack as previously, and Λ is the sweep angle which is

defined here as the angle between the free-stream velocity and the x-z plane on which

the SD7003 foil lies. Note that the angle of attack is the angle between the free-stream
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Figure 5-1: Illustration of the free-stream velocity ~U∞, chord-wise direction x, and
span-wise direction y for the swept-wing flow; Λ is the sweep angle.

velocity and the SD7003 chord (x-direction), that is α = tan−1 (U∞z/U∞x) as for the

wing with no cross-flow. The free-stream velocity now has a magnitude of

U∞ =
√

1 + tan2 Λ =
1

cos Λ
.

In order to keep the descriptions consistent with those in the absence of cross-flow

of Section 4, the term chord-wise is used to refer to the x-direction which preserves the

SD7003 geometry, while the foil that the free-stream flow sees is the SD7003 scaled

by a factor of
√

1 + tan2 Λ along its chord as illustrated in Figure 5-1. Similarly,

span-wise refers to the direction of the leading edge line, that is the y-direction.

The chord-wise Reynolds number, Rex, thus denotes the Reynolds number in the

direction normal to the leading edge line, and is kept at Rex = 60, 000. In this way, the

flow in the chord-wise direction should be similar to the one for the high transitional

regime of Section 4.3 except for the effects of coupling between the cross-flow and

streamwise components as explained in Section 5.1.2. The effects of cross-flow on

the boundary layer development and transition to turbulence can thus be assessed by

comparing the results with Λ 6= 0 and those of Section 4.3. Note that the free-stream

Reynolds number, Re∞ = Rex
√

1 + tan2 Λ = Rex/ cos Λ, and the span-wise Reynolds

number, Rey = Rex tan Λ, vary with sweep angle.

The pressure and skin friction forces are non-dimensionalized with respect to the

dynamic pressure projected along the chord-wise direction in order to obtain pres-

sure and friction coefficients consistent with those of the un-swept wing and allow

for a meaningful comparison. The forces are thus divided by q∞x = 1/2 ρU
2
∞x

in-

stead of the usual q∞ = 1/2 ρU
2
∞; this corresponds to a factor of (1 + tan2 Λ). The

coefficients of lift (force component normal to the free-stream direction) and drag
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(force in the free-stream direction) are referred to as CL and CD, respectively, while

CLx = CL (1 + tan2 Λ) and CDx = CD (1 + tan2 Λ) denote the chord-wise lift and drag

coefficients, respectively, with respect to q∞x .

The arbitrary sign choice implied by the definition (3.13) of the cross-flow unit

vector, ŝ2 = ŝ1 × n̂, results in a dominantly negative cross-flow. In order to avoid

confusion, we refer to the average profile −u2/ue as the cross-flow pseudo-velocity

profile or simply as the cross-flow velocity.

In order to keep the computational cost manageable, all the cases presented in this

chapter (includind those at Λ = 0◦) are run on a grid which has the same resolution

as grid 2 on the x-z planes, but whose span-wise resolution has been increased to 12

elements. Polynomials of order p = 3 are used, and hence the total number of unique

span-wise nodes is 37. We shall call this computational mesh grid 2c. Less attention

is paid to verifying the grid convergence of average quantities than previously and

only this grid is used in swept-wing simulations, since the focus here is on how the

cross-flow influences transition and on the trends with varying sweep angle. These

are not expected to be qualitatively modified as long as the spatial resolution is close

to adequate, and grid 2 proved so for the unswept wing cases.

5.1.2 Swept-Wing Theory

Let us consider the Navier-Stokes equations for a three-dimensional, steady, incom-

pressible, laminar flow whose velocity vector has components u in the chord-wise x

direction, v in the span-wise y direction, and w in the transverse z direction. It is

reasonable to assume that the changes along the span-wise direction over a constant-

chord swept-wing are much smaller than changes that occur along both the chord-wise

and the transverse directions. This is a good approximation not only for small sweep

angles, but for any sweep provided that one is far away from the wing ends (which

is always the case for an infinite wing). The y-derivative terms (∂/∂y) can thus be

neglected in front of x and z derivatives, and the governing equations simplified to

∂u

∂x
+
∂w

∂z
= 0

u
∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂z2

)

u
∂v

∂x
+ w

∂v

∂z
= ν

(
∂2v

∂x2
+
∂2v

∂z2

)

u
∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂z2

)
.
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An interesting property of a flow governed by the above equations is that the

components u and w are decoupled from v, but v depends on u and w. To make this

clear consider the first, second, and last equations above, namely





∂u

∂x
+
∂w

∂y
= 0

u
∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂z2

)

u
∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂z2

)
. (5.2)

This system can be solved for u, w, p (three equations, three unknown functions of x

and z), irrespective of the span-wise velocity: it predicts the two-dimensional laminar

boundary layer flow on the airfoil’s plane. The additional equation

u
∂v

∂x
+ w

∂v

∂z
= ν

(
∂2v

∂x2
+
∂2v

∂z2

)
(5.3)

defines v for given u and w. Hence, there is a one-way coupling between the laminar

flow component in the span-wise direction and the components on the chord-wise

plane: v depends on u and w, but the converse is not true.

Comparing the chord-wise boundary layer flow at different sweep angles thus al-

lows to study the influence (if any) of the cross-flow present over swept wings on the

boundary layer development and transition. The above analysis predicts no influ-

ence in the laminar boundary layer region; on the other hand, turbulence is a highly

non-linear process which could be responsible for a two-way coupling in which the

span-wise flow influences the chord-wise boundary layer evolution.

5.1.3 Boundary Layer Quantities

The cross-flow displacement thickness corresponds to the defect of cross-flow velocity

ratio in the boundary layer relative to its edge value which is zero—since the cross-

flow vanishes at the boundary layer edge by construction (see Section 3.7). Hence it

is defined as

δ∗2 =

∫ ne

0

(
0− u2

ue

)
dn .

The momentum thickness is a tensor with four components

θ11 =

∫ ne

0

(
1− u1

ue

)
u1

ue
dn , θ12 =

∫ ne

0

(
1− u1

ue

)
u2

ue
dn ,
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θ21 =

∫ ne

0

(
0− u2

ue

)
u1

ue
dn , θ22 =

∫ ne

0

(
0− u2

ue

)
u2

ue
dn .

Note that, on average, the cross-flow pseudo-velocity u2 is negative over most of the

boundary layer, and hence all the thicknesses δ∗i , θij are positive values except for θ12.

These integral quantities defined in the local streamwise, cross-flow reference frame

are different for different sweep angles.

In order to decouple any linear effects, it is useful to consider the chord-wise

quantities

δ∗x =

∫ ne

0

(
uex
ue
− u∗x
ue

)
dn , (5.4)

θxx =

∫ ne

0

(
uex
ue
− u∗x
ue

)
u∗x
ue
dn , (5.5)

in which ue = |~u∗e| = |~u∗(ne)| is the boundary layer edge pseudo-velocity magnitude,

and u∗x the component of the pseudo-velocity ~u∗ in the chord-wise x direction. In a

two-dimensional boundary layer, the displacement and momentum thicknesses are

δ∗ =

∫ ne

0

(
1− u∗x

uex

)
dn ,

θ =

∫ ne

0

(
1− u∗x

uex

)
u∗x
uex

dn .

A meaningful comparison of the average boundary layer integral quantities can thus

be obtained by considering the two-dimensional equivalent values for any given sweep

angle and at any chord-wise location through the relations

δ∗ =
ue
uex

δ∗x , (5.6)

θ =

(
ue
uex

)2

θxx , (5.7)

in which the ratio ue/uex (equal to the x component of the streamwise unit vector ŝ1)

accounts for the effect of sweep on the boundary layer development: it is unity for

Λ = 0◦, and increases as the sweep angle increases. The effect of the cross-flow on the

chord-wise boundary layer can thus be assessed by comparing the two-dimensional

equivalents δ∗, θ, and H = δ∗/θ for various sweep angles, and is done in Section 5.3.
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5.2 Results at 30◦ Sweep Angle

The flow around a wing with sweep angle Λ = 30◦ is first considered in detail. After

determining that a span domain length of 0.2c is sufficient to capture the mean flow

features, the average results are compared with those of the un-swept wing.

5.2.1 Effect of Domain Span Length

The presence of a span-wise velocity component may change the characteristic span-

wise length of the flow structures, and hence the flow in a domain with 0.2c span is

compared to that for a 0.3c domain span. Figure 5-2 shows the time evolution of lift,

drag, and span-wise force coefficients for both cases. Figure 5-3 shows the pressure

and skin friction coefficients and Figure 5-4 the boundary layer integral parameters

of the average flow on the wing. As for the un-swept wing (Section 4.3.3), the forces

are similar, the average pressure and skin forces are undistinguishable, and the small

difference in boundary layer quantities after transition can be attributed to a lack

Figure 5-2: Time variation of lift (top left), drag (top right), and span-wise (bottom)
force coefficients for 30◦ sweep wing at Rex = 60, 000 on grid 2c: comparison of grids
with two different span lengths.
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Figure 5-3: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right) for 30◦ sweep wing at Rex = 60, 000: comparison of grids with two different
span lengths.

Figure 5-4: Boundary layer average streamwise displacement and momentum thick-
nesses (left), and shape factor (right) evolution along the chord-wise direction for 30◦

sweep wing at Rex = 60, 000: comparison of grids with two different span lengths.

of statistical convergence of the time-average flow and not to the difference in the

domain’s span. Hence, a domain with a span length of 0.2c and span-wise periodic

boundary conditions is deemed adequate to capture the mean flow features of an

infinite wing even with a span-wise free-stream component corresponding to Λ = 30◦.

This span should also be adequate for any other sweep angle: for larger sweeps,

the span-wise extent of any flow structures is more likely to decrease than increase;

and for smaller Λ, this domain span should be enough since it was sufficient at Λ = 0.

5.2.2 Comparison with Un-Swept Wing

Now the results for a 30◦ sweep wing are compared with those of an un-swept one.

To provide a meaningful comparison, the results referred to here as un-swept wing

are obtained on grid 2c, and are slightly different than those of the previous chapter.
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Figure 5-5: Average pressure coefficient (left) and chord-wise skin friction coefficient
(right): comparison of un-swept and 30◦ sweep wing at Rex = 60, 000 on grid 2c.

Figure 5-6: Boundary layer average streamwise displacement and momentum thick-
nesses (left), and shape factor (right) evolution along the chord-wise direction: com-
parison of un-swept and 30◦ sweep wing at Rex = 60, 000 on grid 2c.

Figure 5-5 shows the pressure and chord-wise skin friction coefficients for both

Λ = 0 and Λ = 30◦, while Figure 5-6 provides a comparison of the boundary layer

streamwise displacement thickness, momentum thickness, and shape factor. As men-

tioned previously, non-dimensionalization of pressure and skin friction forces is done

with respect to the free-stream dynamic pressure projected along the chord-wise di-

rection, q∞x , which is the same for swept and un-swept wings since Rex = 60, 000

for both. The separation location does not change much (5% farther downstream for

the swept wing), but transition does occur significantly earlier (18%) in the presence

of cross-flow. This, and the considerations that follow, shows that the presence of a

cross-flow component destabilizes the streamwise velocity profile.

The inviscid streamline can be seen in Figure 5-7: as expected, it is inclined at

an angle smaller than the sweep angle (or free-stream direction), and is subject to

leading-edge and trailing-edge effects. The average iso-surfaces of q-criterion of Fig-
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Figure 5-7: Inviscid streamline over the upper surface of the 30◦ sweep wing at
Rex = 60, 000 on grid 2c: (left) entire domain and (right) close look at the leading
edge region; the dotted line shows the free-stream direction.

Figure 5-8: Instantaneous (left) and average (right) iso-surfaces of q-criterion for un-
swept wing (top) and wing with 30◦ sweep (bottom) at Rex = 60, 000 with grids 2
and 2c, respectively.
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ure 5-8 show that the swept wing generates more vortical structures, in particular

closer to the leading edge (around the quarter-chord point), than the un-swept wing;

this is consistent with the fact that the flow becomes unstable earlier. Furthermore,

the noise in the average iso-surfaces on the downstream half of the swept wing in-

dicates that averages over more time steps is needed due to the presence of smaller,

higher-frequency structures over the swept wing.

The average and fluctuating profiles of streamwise pseudo-velocity at different

chord-wise locations for Λ = 30◦ of Figure 5-9 are qualitatively similar to those

without cross-flow. The streamwise profile at x/c = 0.1 with and without sweep can

be seen in Figure 5-10: the difference, though very small, is largest on the half of the

boundary layer thickness close to the wall where shear stress is important.

The cross-flow pseudo-velocity profiles, −u2/ue, of Figure 5-11 confirm that the

cross-flow is zero both at the wall and at the boundary layer edge. Moreover, close

to the wing’s leading edge the cross-flow has an S-shaped profile with two inflection

points: the cross-flow velocity −u2/ue goes from being positive near the wall (i.e.

cross-flow dircted towards the root of a wing with backward sweep), to negative near

the boundary layer edge before asymptoting to zero at the edge. Downstream of

x/c ≈ 0.13, the cross-flow velocity remains of the same sign (positive) all the way

from the wall up to the boundary layer edge and the profile has a single inflection

point. The cross-flow velocity direction is consistent with the description given in

Section 2.4 where the cross-flow is described to be directed towards the root on the

upstream part of a wing with positive sweep.

A quantitative measure of how much cross-flow is present is given by the value

of the maximum average cross-flow, max (−u2/ue), along the chord-wise direction

shown on the left plot of Figure 5-12: the black line indicates that the maximum

cross-flow increases linearly as we move downstream up to the transition location of

xtr/c = 0.3996, while the dotted blue line shows that the location of maximum cross-

flow moves away from the wall as we move downstream down towards transition.

The large variations past transition can probably be explained, again, by the need

for computing time averages over more steps.

The right-hand-side of Figure 5-12 shows how the value of the minimum cross-flow

velocity (the local extrema near the boundary layer edge which gives the cross-flow

profile an S-shape) increases as we move downstream, and eventually becomes zero

thus leaving a cross-flow profile with a single inflection point. Furthermore, as this

happens, the locus of minimum negative cross-flow moves closer and closer to the

boundary layer edge as indicated by the dotted blue line in the figure.
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Figure 5-9: Boundary layer average profiles of streamwise pseudo-velocity u1/ue (left),

and fluctuating streamwise pseudo-velocity u′1
2/u2

e (right), at different chord-wise
locations x/c ∈ [0.1, 0.15] for 30◦ sweep wing at Rex = 60, 000 with grid 2c.

Figure 5-10: Boundary layer average streamwise profile u1/ue at x/c = 0.1: compar-
ison of un-swept and 30◦ sweep wing at Rex = 60, 000 on grid 2c.

Figure 5-11: Boundary layer average profiles of cross-flow pseudo-velocity −u2/ue

(left), and fluctuating cross-flow pseudo-velocity u′2
2/u2

e (right), at different chord-
wise locations x/c ∈ [0.1, 0.15] for 30◦ sweep wing at Rex = 60, 000 with grid 2c.
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Figure 5-12: Values and locations of maximum (left) and minimum (right) average
cross-flow velocity −u2/ue for 30◦ sweep wing and Rex = 60, 000 with grid 2c.

A comparison of streamwise amplification factor, N1, evolution between the wing

without cross-flow and the wing at Λ = 30◦ can be seen in Figure 5-13. As expected

and as confirmed by the earlier occurring transition, the amplification factor grows

faster in the presence of cross-flow (slope of 16 in the region of linear increase where

disturbances grow exponentially) than for the un-swept wing (linear slope of 13).

However, the streamwise profiles with and without sweep only differ slightly as

shown in Figure 5-10. If one solves the Orr-Sommerfeld equations for both of these

profiles, the resulting growth factors differ only by about 3%, thus proving that the

change in streamwise profiles is insignificant from a stability point of view. As ex-

plained in the background section, the cross-flow/TS interaction is particularly im-

portant since the cross-flow velocity magnitude is significant near the wall (highest

at around 20% of the boundary layer thickness here) which is a region of high shear

Figure 5-13: Amplification factor N1

of streamwise perturbations: compari-
son of un-swept and 30◦ sweep wing at
Rex = 60, 000 on grid 2c.

Figure 5-14: Streamwise and cross-
flow amplification factors, N1 and N2

respectively, for 30◦ sweep wing at
Rex = 60, 000 with grid 2c.
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where the streamwise profile has a large gradient. Thus, even more than modifying

the streamwise profile, the presence of a cross-flow velocity modifies the stability of

the overall flow: the transition over the 30◦ swept wing is not solely caused by the

growth of TS waves, but is a mixed result of streamwise and cross-flow disturbances.

We shall come back to this important fact later.

With Λ = 30◦, the cross-flow amplification factor N2 plotted in Figure 5-14 has a

similar slope (close to 15) in the linear-growth region as the streamwise amplification

factor N1, but a larger normalized magnitude at any given chord-wise location. How-

ever, this does not allow us to determine whether transition is caused by the growth

of TS waves or by cross-flow disturbances: the threshold where transition occurs

might not be the same for both amplification factors, and there is no currently known

value of critical cross-flow amplification factor—the determination of an appropriate

value being outside the scope of the present research, especially since the mechanism

of cross-flow instability might not be as accurately reduced to the amplification of

cross-flow disturbances as purely TS transition is.

5.3 Effects of Sweep Angle

Having seen how the presence of cross-flow induced by a 30◦ sweep can accelerate

transition, we now quantify how different sweep angles affect the boundary layer

development by considering values of Λ ∈ {0◦, 1◦, 5◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦}. The

results are summarized in Table 5.1.

5.3.1 Forces

When normalizing the forces with respect to the chord-wise dynamic pressure, q∞x ,

there is little change in lift coefficient, CLx, which remains at 0.6 within about 5%

for all sweep angles considered as illustrated in Figure 5-15 (blue line with triangles).

Indeed, lift is primarily the result of pressure forces which, when normalized properly,

change little with sweep angle and only in the region close to transition as can be

seen in Figure 5-16. On the other hand, the drag coefficient, CDx, increases for sweep

angles of 30◦ and more, probably due to the rise in friction coefficient associated with

an earlier transition, as well as to some non-linear effects in the interaction between

streamwise and cross-flow components. As expected, the third coefficient of force,

CCx, (in the direction normal to both lift and drag) increases almost linearly with Λ.
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Figure 5-15: Variation of force coefficients with sweep angle at Rex = 60, 000 with
grid 2c: lift coefficient (top left), drag coefficient (top right), and span-wise force
coefficient (bottom). The subscript x and dotted lines with triangles refer to the force
coefficients non-dimensionalized with respect to the chord-wise dynamic pressure q∞x .

If we now look at the lift and drag as commonly defined with respect to the

free-stream (CL and CD black lines and circles of Figure 5-15), both lift and drag

decrease close to linearly for moderate and large sweep angles (Λ ≥ 20◦) as occurs

when a wing is swept and its profile is effectively elongated. It is interesting that the

third force component increases and then decreases, having a maximum at around

Λ = 30◦; however, in a typical vehicle configuration with two symmetric wings, this

lateral force would be counteracted by an equal and opposite one from the other wing,

and hence would have no impact on the overall aerodynamics of the vehicle.

5.3.2 Separation, Transition, Reattachment

Separation occurs almost at the same chord-wise location across all sweep angles, as

measured from the two-dimensional equivalent shape factor and the common location

where H = 4 (Figure 5-20). The earliest and latest separations are observed at 24%
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Figure 5-16: Average pressure coefficient profiles (left) and closer
view on transition region (right): comparison between sweep angles of
{0◦, 1◦, 5◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦} at Rex = 60, 000 with grid 2c.

Figure 5-17: Variation of separation xsep/c, transition xtr/c, and reattachment xr/c
locations with sweep angle at Rex = 60, 000 with grid 2c.

and 25% of the chord, respectively, showing that separation location varies only by

about than 6% (moving upstream by less than 1.5% of the chord) even for sweep

angles up to 60◦ as illustrated in Figure 5-17.

The separation location is basically left unchanged since, for all sweep angles at

these low Reynolds numbers, the boundary layer separates while being laminar and

hence separation is determined by the chord-wise pressure gradient. The presence of

more or less cross-flow at the different sweep angles influences the growth of distur-

bances, but has no effect on the laminar boundary layer development and separation.

On the contrary, transition does vary significantly with sweep angle as can be

readily observed in the pressure coefficient on the wing’s upper surface shown in

Figure 5-16. Transition location is determined by computing the boundary layer

two-dimensional equivalent shape factor H (Figure 5-20) and measuring its peak.

Transition takes place between 0.445c and 0.498, a close to 12% difference, and for
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Λ ≥ 5◦ moves farther and farther upstream (by as much as 5% of the chord) as the

sweep angle is increased.

The reattachment location is more accurately measured as the place where the

shape factor H goes back down to a value of 4 after transition—since the friction

coefficient is not a good measure of the flow nature, especially aft of separation.

Transition occurring earlier for larger sweep angles, the flow reattaches faster as ex-

pected. Reattachment takes place as late as xr/c = 0.5716 for the un-swept wing, but

moves up to 0.5372c for Λ = 40◦: reattachment is pushed upstream by as much as

3.5% of the chord. This represents a difference of only 6% while transition between

these two cases moves upstream by 12%; this is to be explained by the fact that

turbulent flow fluctuations do create more momentum but not all of the momentum

gain is readily organized into a shear layer shape that induces reattachment.

To summarize, the change in transition location (by up to 0.05c) is more significant

than the change in both separation (up to 0.015c) and reattachment (up to 0.035c)

locations: transition is dominated by the growth of unstable perturbations and hence

strongly influenced by the presence of a destabilizing cross-flow, while laminar separa-

tion is set by the pressure gradient which is left unchanged in the chord-wise direction.

Reattachment (influenced both by the unchanged pressure gradient and the moving

transition) does globally move upstream due to the faster transition, thus making the

laminar separation bubble slightly shorter for larger sweeps.

It is important to note that the uncertainly in determining the relevant locations

is not insignificant, in particular at small sweep angles. In particular, transition is

taken at the location of the peak in the two-dimensional equivalent shape factor, and

the peak region is not smooth given the relative coarseness of the grid employed.

5.3.3 Boundary Layer

The plots of streamwise boundary layer displacement thickness, momentum thickness,

and shape factor of Figure 5-18 show a continuous change in boundary layer shape

(except for the case at Λ = 1◦) as the sweep angle is increased: the peak in H11

moves upstream and its maximum value decreases as quantified in Figure 5-21. Even

a small sweep angle of Λ = 10◦—which induces only little cross-flow and small cross-

flow perturbations—is enough to change the stability characteristics of the streamwise

boundary layer profile, as evidenced by the change (about 13%) in max(H11) between

Λ = 0◦ and 10◦. As the sweep angle is increased further, the maximum shape factor

continues to decrease but at a lower and lower rate.
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Figure 5-18: Boundary layer average streamwise displacement and momen-
tum thicknesses (left), and shape factor (right) evolution for sweep angles of
{0◦, 1◦, 5◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦} at Rex = 60, 000 with grid 2c.

Figure 5-19: Boundary layer average cross-flow displacement thickness evolution for
sweep angles of {0◦, 1◦, 5◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦} at Rex = 60, 000 with grid 2c.

Figure 5-20: Boundary layer average two-dimensional equivalent chord-wise displace-
ment and momentum thicknesses (left), and shape factor (right) evolution for sweep
angles of {0◦, 1◦, 5◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦} at Rex = 60, 000 with grid 2c.
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Figure 5-21: Variation of boundary layer streamwise shape factor maximum,
max(H11), and two-dimensional equivalent shape factor maximum, max(H), with
sweep angle at Rex = 60, 000 with grid 2c.

The cross-flow displacement thickness becomes larger and larger at any chord-wise

location when the sweep angles increases as can be seen in Figure 5-19: larger sweep

angles generate more cross-flow and hence a larger δ∗2 by its definition (5.1.3).

As explained in Section 5.1.3, since the chord-wise characteristics are held con-

stant for all sweeps (same airfoil profile, angle of attack, chord-wise Reynolds number)

the two-dimensional-equivalent quantities δ∗, θ, H can provide a meaningful compar-

ison by decoupling the cross-flow components from the purely chord-wise boundary

layer evolution. In other words, if the cross-flow and streamwise effects are only lin-

early coupled, the two-dimensional-equivalent curves for different sweep angles should

collapse into a single line.

Comparing the plots of δ∗, θ, H in Figure 5-20 clearly demonstrates that the

span-wise (and cross-flow) effects cannot be considered independently of the chord-

wise (and streamwise) evolution for sweep angles between 10◦ and 30◦: the influence

of the latter on the former is non-linear. On the other hand, for Λ ∈ {0◦, 1◦, 5◦}
the two-dimensional equivalent boundary layer curves collapse, indicating that only

linear interactions occur; the same happens for sweep angles of 40◦ and larger.

This is evident in most of the curves presented next, as well as on Figure 5-21

which shows the maximum in H: if we ignore the Λ = 1◦ point, the curve is flat

between 0◦ and 5◦ sweep, and then again for Λ ≥ 40◦. In between, the interaction

between cross-flow and streamwise components is non-linear and there is a continuous

decrease in the H peak as the sweep angle is increased.

In the laminar region, all the curves of two-dimensional equivalent boundary layer

integral quantities overlap: if the cross-flow affects streamwise disturbances, these
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Figure 5-22: Boundary layer average profiles of streamwise u1/ue (right) and
cross-flow −u2/ue (left) pseudo-velocity at x/c ∈ [0.1, 0.15] for sweep angles of
{0◦, 5◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦} at Rex = 60, 000 with grid 2c.

Figure 5-23: Variation of the average boundary layer cross-flow pseudo-velocity profile
−u2/ue characteristics with sweep angle at Rex = 60, 000 with grid 2c: maximum at
x/c = 0.1 (left) and chord-wise location where the profile stops being S-shaped, that
is where min (u2/ue) ≥ 0 (right).

play no role in the laminar boundary layer development. Once separation occurs,

the disturbances are rapidly amplified and the interactions become highly non-linear:

the largest difference between the curves occurs around the transition region where

disturbance growth and their interactions dominate the shear layer evolution.

Note that the curves of boundary layer quantities at 0◦ and 1◦ sweep in Figures 5-

18 and 5-20 are not smooth near transition. This can be attributed to the coarseness

of the grids being used and to the very high sensitivity of boundary layer quantities

near transition to spatial resolution. Furthermore, the uncertainty in determining the

separation, transition, and reattachment locations shows in Figure 5-17 is relatively

large. Therefore, while we believe the major trends discussed in this section can
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be trusted, the exact values could benefit from a more accurate solution; this is

particularly true at certain sweep angles (0◦ and 1◦ certainly, and probably also 10◦)

and it is thus not possible to draw all of the conclusions with confidence.

As the average streamwise and cross-flow pseudo-velocity profiles of Figure 5-22

show, the streamwise flow is only slightly modified but the cross-flow component sees

significant changes with varying sweep angle. In particular, the value of the maximum

cross-flow velocity at any given chord-wise location, e.g. at x/c = 0.1 as in the plots

on the left of Figure 5-23, increases while its minimum (second extrema near the

boundary layer edge of S-shaped profiles) decreases when Λ increases. This is similar

to what happens when moving downstream in the chord-wise direction: the cross-flow

profiles becomes more and more unstable as we either move downstream or increase

the sweep angle. Again, this indicates that the cross-flow has a destabilizing effect.

From the precise variation of maximum cross-flow velocity with sweep angle at

x/c = 0.1 of Figure 5-23, it can be noted that the maximum cross-flow value increases

linearly up to about Λ = 40◦ before starting to level off. This saturation suggests

that increasing the sweep cannot result in an arbitrarily large cross-flow.

Similarly, there seems to be a limit of how far downstream cross-flow S-shaped

profiles (i.e. profiles with two-inflection points) can exist, all the profiles having a

single inflection point far enough downstream—even long before separation. As the

right plot of Figure 5-23 shows, S-shaped profiles are present in longer and longer

regions near the leading edge as the sweep angle is increased, but their spatial extent

does not seem to increase above about 0.14c where the curve levels off for Λ ≥ 30◦.

5.3.4 Amplification Factors

The streamwise and cross-flow amplification factors, N1 and N2, for different sweep

angles can be seen in Figure 5-24. Contrarily to the average boundary layer integral

quantities, the change in amplification factors is not uniform with sweep angle: the

growth (even linear) of disturbances is more complex than the average boundary layer

development, and a simple correlation seems unlikely. However, this hypothesis needs

to be verified with better resolved simulations, as the average results at some of the

sweep angles are particularly noisy.

Correspondingly, the slopes of streamwise and cross-flow amplification factors in

their linear regions vary non-uniformly with sweep angle as quantified in Figure 5-25.

The linear slope of N1 varies by as much as 30% with sweep angle, and an even larger

change is observed in the growth of the cross-flow disturbances which almost doubles
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Figure 5-24: Streamwise amplification factor N1 (left), and cross-flow amplification
factor N2 (right): comparison of different sweep angles at Rex = 60, 000 with grid 2c.

Figure 5-25: Variation of stream-
wise and cross-flow amplification fac-
tor slopes in the linear-growth region,
dN1/d(x/c) and dN2/d(x/c), with sweep
angle at Rex = 60, 000 with grid 2c.

Figure 5-26: Variation of stream-
wise and cross-flow amplification fac-
tors at transition with sweep angle at
Rex = 60, 000 with grid 2c.

from Λ = 5◦ to Λ = 20◦. What happens for sweep angles larger than 30◦ (slope

amplitudes decrease, then increase, and then increase again) can be interpreted as

the effect of a complex interaction between streamwise and cross-flow unstable waves.

Figure 5-26 shows the values of N1 and N2 at transition for the different sweeps.

Assuming that there is a critical cross-flow amplification analog to the critical amplifi-

cation factor in two-dimensional flows, if transition were due to cross-flow instabilities

at Λ = 60◦ (which is the most likely candidate for cross-flow transition) then tran-

sition would also have to be caused by cross-flow instabilities at all the other sweep

angles since they all have a value of N2 at transition lower than that for Λ = 60◦.

However, it seems unlikely that transition at such a small sweep angle as 5◦ would

be the result of unstable cross-flow disturbances. Therefore, the following hypothesis
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seems again the most plausible: transition over the swept wing at this low Reynolds

number is caused by the growth of unstable TS waves (just as it was for the un-swept

wing), but the presence of even small cross-flow velocities destabilizes the laminar

streamwise profile and accelerates transition. In other words, for intermediate sweep

angles we are in the presence of a mixed transition.

Again, at this point it is not possible to determine at which critical cross-flow

amplification factor transition can be assumed to occur, and hence it is even harder to

determine which type of disturbance (TS or cross-flow waves) is eventually responsible

for transition. However, for sweep angles of 30◦ and more, the value of N1 at transition

remains more or less constant close to 5.5, while transition location keeps moving

upstream: this suggest that transition at large sweeps is primarily dominated by

cross-flow disturbances. In spite of this, N2 at transition keeps decreasing; one should

remember at this point that cross-flow transition may not be characterized by solely

the linear growth of disturbances—a simplification which has often be successful for

TS-dominated transition.

5.3.5 Summary

Three interesting facts observed throughout the study of the effects of cross flow on

transition are worth emphasizing once more. One is the saturation phenomena ob-

served at large sweep angles: after “enough” cross-flow is present (a fuzzy threshold),

the flow becomes somewhat insensitive to further increases, and the cross-flow stops

being strongly influential even before the sweep angle becomes inefficient at generat-

ing cross-flow. This is seen in many of the curves which flatten-out for large values

of Λ, e.g. maximum in H and transition location. A plausible explanation is that

for moderate to large sweep angles transition is very strongly influenced (and even

dominated) by the cross-flow instabilities.

Furthermore, the streamwise and cross-flow components cannot be decoupled from

a stability point of view for intermediate sweep angles (roughly between Λ = 10◦ and

30◦) and the resulting mixed transition is due to the presence of strong non-linear

interactions. Considering the two components independently is however possible for

either very small or very large sweep angles. This is consistent with the high Reynolds

number observations of Strokowsky and Orszag (1977)1 and with the results of authors

(e.g. Reshotko, 1994) who have successfully decoupled them for other flows.

1when the cross-flow is unstable, the boundary layer stability characteristics are very close to
those of the cross-flow alone (i.e. irrespective of the streamwise flow); when the cross-flow is stable,
the stability characteristics are essentially those of the streamwise profile; see details in Section 2.4
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Finally, even a very small amount of cross-flow significantly affects transition, as

evidenced by the significant differences between results at 0◦ and 10◦ sweep. This is

not unexpected since transition and turbulence are highly non-linear processes, and

the stability characteristics of boundary and shear layers are very sensitive to even

small perturbation. An important practical conclusion is that, at these low Reynolds

numbers in which transition takes place along a laminar separation bubble, a purely

TS-wave based transition is very unlikely to be successful in real flow conditions since

the free-stream will not be (nor stay) closely aligned with the chord-wise direction—

and this misalignment will be more pronounced on instantaneous fields and with

flapping vehicles for which the wing is not stationary.
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Chapter 6

Conclusions

6.1 Summary and Contributions

The present work shows how the formation, and related transition to turbulence,

of a laminar separation bubble (LSB) on an un-swept, rectangular, SD7003 infinite

wing at 4◦ angle of attack and low Reynolds numbers can be predicted by means

of an Implicit Large Eddy Simulation (ILES) using a Discontinuous Galerkin (DG)

method with relatively coarse grids. In addition to being one of the first LES studies

using DG and hence an important contribution to the advancement of numerical

methods, attention is given to the boundary layer characteristics which had not yet

been previously studied for this problem on the base of numerical simulations, thus

contributing to the understanding of low Reynolds number flows and transition.

At a Reynolds number of 10,000, the flow is found to be essentially two-dimensional

with no closed laminar separation bubble (LSB) formation since it lacks reattachment,

and a periodic shedding of pairs of large counter-rotating vortices. For this flow,

computations with 430,080 high-order nodes and polynomials of order p = 3 are

sufficient, while two-dimensional simulations with as little as 44,000 high-order nodes

provide a good estimate.

At the higher Reynolds numbers of 22,000 and 60,000, significant three-dimensional

effects are present and an LSB is observed on the upper surface. In order to capture

the main flow features, close to 1 million high-order nodes are required with p = 3 at

Re = 22, 000, while at Re = 60, 000 about 1.8 million nodes and p = 4 are necessary.

The study of transition that takes place along the LSB, through the boundary layer

streamwise fluctuating pseudo-velocity profiles and the spatial growth of the ampli-

fication factor of disturbances, shows that transition is caused to unstable TS waves
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and hence a natural transition. This observation of TS waves through numerical

simulations has not been evidenced in other works.

Very little being known about the influence of cross-flow on transition at low

Reynolds numbers, a study of the same wing configuration at various sweep angles

is presented. By maintaining the chord-wise Reynolds number, angle of attack, and

SD7003 geometry constant, the effects of cross-flow are clearly determined since the

boundary and shear layer developments have a common two-dimensional equivalent

boundary layer. In this way, if the cross-flow and streamwise effects were only linearly

coupled, two-dimensional-equivalent curves for different sweep angles would collapse

into a single line. This is not what is observed for intermediate sweep angles between

10◦ and 40◦, and it is clearly demonstrated that—except at either very small and

or large sweeps—the cross-flow effects cannot be considered independently of the

streamwise evolution due to strong non-linear interactions that take place after the

laminar boundary layer separates.

Two consequences of this finding are of great importance. First, a method which

would predict low Reynolds number transition based on two separate models for

streamwise and cross-flow amplifications would not be appropriate even for moder-

ately swept wings. Both components need to be treated together, and a single tran-

sition equation applicable to swept wings would have to be devised by, for instance,

including appropriate correlations to model the cross-flow effects on the streamwise

boundary layer development and disturbance amplification. A step-based blending

might be worth investigating since for very little cross-flow transition seems dominated

by TS instabilities, and dominated by cross-flow disturbances when the cross-flow is

sufficiently large.

Furthermore, even a relatively small amount of cross-flow present over a wing

with 10◦ sweep significantly affects transition. In practical terms, this means that

many real, low Reynolds number flows with an LSB see a mixed-type transition

since the free-stream is unlikely to be closely aligned with the chord-wise direction.

This misalignment is expected to be more pronounced on instantaneous fields and

with flapping vehicles for which the wing is not stationary, and more so at lower

than higher Reynolds numbers due to the low inertia of the flow. An important

presumption to be adopted in the study of the flows relevant to MAVs and animal

locomotion is thus that the type of transition (TS dominated, cross-flow dominated,

or mixed) is a priori unknown.
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6.2 Further Work

From a purely numerical standpoint, the question of how well the numerical dissipa-

tion in a DG method functions as a general implicit subgrid-scale model for ILES is

still unclear, and the present work being the first to use DG for fully three-dimensional,

unsteady ILES provides only a limited insight. How the intrinsic dissipation in DG

behaves for other classes of flows, starting from the fundamental turbulence decay,

needs to be investigated. Moreover, as with finite volume methods, other dissipative

schemes for the inviscid fluxes are worth trying and could prove more or less effective

depending on the particular flow being simulated.

In terms of deriving a model for separation-induced transition over un-swept wings,

the next step is to couple the transition equation presented and tested here with

the RANS Spalart-Allmaras model via its trip term. This could be done in a DG

setting or with more established CFD techniques, even though the calibration of the

model might vary depending on which numerical method is being used—in particular

whether it is high or low order and whether it relies on numerical dissipation which is

explicit (as with the filters used in finite differences) or implicit (as with finite-volume

type techniques which tend to rely on some form of upwinding). The ultimate goal is

of course to provide a transition model with general applicability (i.e. usable with a

variety of numerical methods for a relatively large class of flows) which is affordable

enough for use in design and everyday engineering computations.

With regards to the understanding of the cross-flow effects on transition, the sweep

wing need to be be studied with higher spatial resolution in order to reveal more flow

features and reduce the uncertainty of the trends observed in the average results,

as well as validate or disprove some of the hypothesis presented. Furthermore, a

more detailed variation of not only the sweep angle but also the Reynolds number

and angle of attack is a preliminary step to deriving correlations necessary to model

mixed transition. It might be then possible to modify the transition equation for the

amplification of disturbances in order to take into account the effect of cross-flow.

Finally, MAVs benefit from flapping-type propulsion and lift generation because

of the low Reynolds number flows involved. Understanding and predicting how the

boundary layer develops and transitions over wings with heaving and/or peaching

motions can be approached in the same manner as the wings studied here.
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Appendix A

On the Dynamics of Turbulence

A.1 Length Scales

A turbulent flow is characterized by a continuous and broad range of length and time

scales. The size of the largest eddies in a flow is represented by the integral length

scale, `, which is of the order of the width of the flow e.g. the diameter of the pipe

or the width of the channel in Poiseuille flow.

At the other end of the spectrum, the fluid viscosity sets a lower limit on the

size of the structures: below a certain size energy dissipation is the dominant process

and velocity fluctuations are negligible. In other words, there is a size threshold

below which velocity fluctuations are negligible compared to viscous damping – and

by significant we mean that the characteristic time of the viscous dissipation is much

smaller than the time scale of the motion.

The size of smallest turbulent eddies is characterized by the Kolmogorov scale,

ηK , also known as the Kolmogorov microscale of length. An expression for ηK can be

derived using dimensional analysis by assuming that the motion at very small scales

is only governed by the dissipation rate per unit mass, ε, and the fluid viscosity, ν,

namely

ηK =

(
ν3

ε

)1/4

. (A.1)

For these small eddies, dimensional analysis also provides a time scale, τK = (ν/ε)1/2,

and a velocity scale, vK = (νε)1/4. These three scales for length, time, and velocity

are known as Kolmogorov’s microscales. To the Kolmogorov scale corresponds the

137



Kolmogorov dissipative wave number

kK =
1

ηK
=
( ε
ν3

)1/4

.

The Reynolds number based on the Kolmogorov scales, ReK = ηKvK/ν, is of order

unity: the small-scale motions are very viscous.

A.2 Energy Transfer

On the one end, turbulence production is an increasing function of eddy size, and

hence is dominated by the large scales (Tennekes and Lumley, 1972). Turbulent

motions extract energy from the mean flow, which thus enters the turbulent energy

spectrum at scales of sizes comparable to the integral length `. On the other end,

viscous dissipation of turbulent energy takes place at length scales comparable to

the Kolmogorov scale ηK . Thus, turbulence dynamics involves the transfer of energy

from the larger scales to the smaller scales of motion, down to the Kolmogorov scale

where dissipation takes place. This is elegantly illustrated by Richardson (1922) in

the riddle

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity

(in the molecular sense)

The downward transfer of energy from the larger to the smaller scales is called

energy cascade, or turbulent cascade. Though energy generally is transferred towards

smaller and smaller eddies (as in isotropic turbulence), the opposite transfer does take

place in certain circumstances and is referred to as backscatter.

A first consequence of the energy cascade from large to small eddies is that the

energy dissipation rate ε is related to the transfer of energy from the large eddies and

hence governed by the large-scale motions, and this in spite the fact that dissipation

takes place at small scales. Mathematically, since the large eddies have a characteristic

velocity which is of the order of the turbulent fluctuations u′, the dissipation rate is

solely determined by the integral scale ` and by u′, and hence dimensional analysis

provides

ε ∼ u′3

`
(A.2)
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or ε = Au′3/` where A is a constant which has been experimentally determined to be

close to unity (Tennekes and Lumley, 1972).

A.3 The Energy Spectrum

Important insight into the dynamics of turbulence can be gained by working in wave-

number space and considering isotropic turbulence, which is by definition invariant

under rotation and translation transformations and hence has an average velocity of

zero. The wave-number k characterizes scales of size η = 2π/k (though sometimes

the relation η = 1/k is used). The variation of energy density, E(k), as a function of

k is known as the energy spectrum. The turbulent kinetic energy per unit mass, and

total dissipation rate in the flow are thus given by, respectively,

KE =

∫ ∞

0

E(k) dk , ε = 2ν

∫ ∞

0

k2E(k) dk .

The seminal work of Kolmogorov (1941a,b) provides a quantitative measure of how

the energy density E(k) varies. Kolmogorov first assumed that, at large Reynolds

numbers, there exists a range of scales over which the motion statistics are only a

function of the wave number k, of the dissipation rate ε, and of the viscosity ν. That

is, the small scale motions are independent (universal) of the particularities of the

large scales that characterize a given flow. This range of scales (or wave numbers)

is referred as the universal equilibrium range and characterized by k � 1/`. In this

range, the time scale of the motions is much smaller than the time scale of the large

eddies, and hence equilibrium with the large scales can be maintained: energy is

dissipated at the smallest scales as rapidly as it is produced by the large scales. This

result if of great importance: the statistics of the small eddies is universal, i.e. the

same in every turbulent flow (for whatever geometry, free-stream conditions, etc).

This universal equilibrium range can be divided into two sub-ranges. At the

high end of the spectrum is the dissipation range, close to the Kolmogorov dissipative

wave number, over which the energy decays exponentially as a result of motions being

damped by viscosity. In this range, viscous effects dominate, and the time scale of

dissipation is much smaller than the time that characterizes flow motions.

There exists an intermediate range of scales known as the inertial range. The

assumption that defines this range of wave numbers, as made by Kolmogorov, is that

inertial effects are dominant. Over this range, the energy transfer is insensitive to

both the dynamics of the large, turbulence-producing scales on the one hand, and to
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Figure A-1: Illustration of the energy spectrum of homogeneous turbulence (left),
and of the different sub-ranges (right).

viscous effects on the other hand. Thus, for 1/` � k � kK , the energy spectrum is

only a function of the wave number k and the dissipation rate ε. Dimensional analysis

(E having units of m3/s2, ε units of m2/s3, and k units of 1/m) then yields the power

law for the energy spectrum in the inertial range

E(k) = CKε
2/3k−5/3 , (A.3)

in which CK is the Kolmogorov constant whose value in a three-dimensional spectra

is close to 1.62 (Monon and Yaglom, 1975; Yeung and Zhou, 1997). The energy

spectrum of turbulence can be seen (qualitatively) in Figure A-1, together with an

illustration of the different ranges.

A very important consequence for turbulence modeling of the existence of an

inertial sub-range is that the flow can be regarded as self-similar over the inertial

range since the quantity γ5/3E(k) is invariant by the transformation k 7→ γk, i.e.

γ5/3E(γk) = E(k). This provides the justification behind the so-called scale-similarity

subgrid scale models for LES (Meneveau and Katz, 2000).

It is important to note that the assumption of high Reynolds number ensures

that 1/` � kK , and hence the existence of the universal equilibrium range over

which statistics are independent of the large scale motions. Furthermore, this also

guarantees the existence of wave numbers k such that 1/`� k � kK , and hence the

existence of the inertial range (Batchelor, 1953).
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Appendix B

Linear Stability Theory:

Derivations

B.1 Disturbance Equations

The governing equations for a Newtonian fluid are the Navier-Stokes equations, which

for an incompressible flow read

∂ui
∂xi

= 0 (B.1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν∇2ui + fi for i ∈ {1, 2, 3} , (B.2)

in which ui is the velocity component in the ith direction xi, p the pressure, ρ the fluid

density assumed constant, fi the body forces, and ∇2 denotes the Laplacian operator

∂2/∂xi∂xi.

The basic laminar flow of velocity components Ui and pressure P is assumed to

be physical and hence to satisfy the equations of motion, such that

∂Ui
∂xi

= 0 (B.3)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+ ν∇2Ui + fi for i ∈ {1, 2, 3} . (B.4)

A perturbation with velocity components u′i and pressure p′ is superimposed on

this basic flow, that is

ui = Ui + u′i , p = P + p′ . (B.5)

Introducing this decomposition into the governing equations (B.1) and (B.2), and
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subtracting the basic flow equations (B.3) and (B.4) to each of these respectively

yields the disturbance equations

∂u′i
∂xi

= 0 (B.6)

∂u′i
∂t

+ Uj
∂u′i
∂xj

+ u′j
∂Ui
∂xj

+ u′j
∂u′i
∂xj

= −1

ρ

∂p

∂xi
+ ν∇2u′i for i ∈ {1, 2, 3} . (B.7)

B.2 Small Perturbations for Parallel Flow

Since one can assume that the initial perturbations of a laminar flow are small and

two-dimensional, the disturbance equations can be simplified by letting

u′ = u′1(x, n, t) , v′ = u′2(x, n, t) , w′ = u′3 = 0 , p′ = p′(x, n, t) , (B.8)

where the subscript 1 denotes the streamwise (or chord-wise in the present work) x

direction, the subscript 2 the transverse, or normal, n direction, and the subscript 3

the third direction (span-wise). Furthermore, a steady parallel basic flow is assumed,

that is

U = U1(n) , V = U2 = 0 , W = U3 = 0 , P = P (x, n) . (B.9)

The basic pressure P remains a function of the streamwise direction x since the flow

is driven by the pressure gradient ∂P/∂x.

The parallel flow assumption is exact for fully developed flows inside ducts of

constant cross-section (channel flow). It is a good approximation for boundary layers

in which x-derivatives are negligible in front of n-derivatives.

Introducing the forms (B.8) and (B.9) into the disturbance equations (B.6) and

(B.7) for i = 1, 2, and neglecting quadratic terms in the perturbations, gives the small

perturbation equations for parallel flows

∂u′

∂x
+
∂v′

∂n
= 0 (B.10)

∂u′

∂t
+ U

∂u′

∂x
+ v′

∂U

∂n
= −1

ρ

∂p′

∂x
+ ν∇2u′ (B.11)

∂v′

∂t
+ U

∂v′

∂x
= −1

ρ

∂p′

∂n
+ ν∇2v′ . (B.12)

These constitute three equations in three unknowns u′, v′, p′, for a known basic flow

U(n). The pressure disturbance term can be eliminated by taking the x-derivative of

the n-momentum (B.11) and the n-derivative of the x-momentum (B.12), subtracting
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the resulting relations to eliminate the terms ∂2p′/∂x∂n, and making use of continuity

(B.10), to obtain

∂

∂t

(
∂u′

∂n
− ∂v′

∂x

)
+ U

∂

∂x

(
∂u′

∂n
− ∂v′

∂x

)
+ v′

∂2U

∂n2
= ν∇2

(
∂u′

∂n
− ∂v′

∂x

)
(B.13)

which together with the continuity equation (B.10) forms a system of two equations

that needs to be solved for the two perturbation velocities u′, v′.

Note that this is nothing but the convection-diffusion equation governing the per-

turbation in vorticity ω′ = ∂v′/x− ∂u′/n,

∂ω′

∂t
+ U

∂ω′

∂x
= v′

∂2U

∂n2
+ ν∇2ω′ ,

where the source term (first term on the right-hand-side) accounts for the vorticity

generated by the gradient in U .

B.3 The Orr-Sommerfeld Equation

In order to automatically satisfy the continuity equation (B.10), it is useful to intro-

duce a perturbation stream function ψ(x, n, t) such that

u′ =
∂ψ

∂n
, v′ = −∂ψ

∂x
. (B.14)

The linear, homogeneous, system of equations can be solved using the method of

separation of variables and hence we assume that the perturbation on the basic flow

is a linear combination of independent modes, with each mode propagating with time

in the streamwise x direction. Thus, we introduce a trial solution for the stream

function that is made up of a single of these modes, that is

ψ(x, n, t) = φ(n) ei(αx−ωt) , (B.15)

and then any arbitrary perturbation can be decomposed into such Fourier modes.

Here φ(n) is the eignefunction consistent with the parallel flow assumption and hence

only a function of n.

Using the perturbation stream function definition (B.14) and form (B.15) gives

∂u′

∂n
− ∂v′

∂x
=

∂

∂n

[
φ′ei(αx−ωt)

]
− ∂

∂x

[
−φ i αei(αx−ωt)

]
=
(
φ′′ − α2φ

)
ei(αx−ωt) ,
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where the prime on φ denotes the derivative with respect to n. This can finally be

introduced into (B.13), and simplified using the fact that ei(αx−ωt) 6= 0, α 6= 0, to

obtain the dimensional form of the Orr-Sommerfeld equation

(U − c)
(
φ′′ − α2φ

)
− U ′′φ = − i

α
ν
(
φ′′′′ − 2α2φ′′ + α4φ

)
. (B.16)

Non-dimensionalization is carried out by taking the boundary layer edge velocity

Ue as the characteristic velocity, and some measure of the boundary layer thickness

d as the characteristic length (usually the displacement thickness δ∗), such that the

characteristic Reynolds number is

Re =
Ued

ν
(B.17)

and the Orr-Sommerfeld equation in dimensionless form reads

(U − c)
(
φ′′ − α2φ

)
− U ′′φ = − i

αRe

(
φ′′′′ − 2α2φ′′ + α4φ

)
. (B.18)

This equation was derived by Orr (1907) and Sommerfeld (1908) and is the starting

point of the stability theory of laminar parallel flows. Together with its homogeneous

boundary conditions it forms an eigenvalue problem, with parameters α, c, Re, and

eigenfunctions φ(n). Solving the stability problem corresponds to finding the solutions

of this equation and thus determining whether the amplification factor ωi is positive

or negative, that is whether the perturbations are amplified (unstable basic flow) or

damped (stable basic flow).

The corresponding boundary conditions for a boundary layer are given by the

no-slip condition at the wall located at n = 0, and the vanishing of disturbances

infinitely far from the wall. Both of these conditions translate on vanishing pertur-

bation velocities, and give φ = 0, φ′ = 0 both at the wall (n = 0) and far from it

(n→∞).
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Appendix C

LES: Further Considerations

C.1 Filtered Equations

Mathematically, the distinction between resolved and un-resolved (subgrid) scales

can be made through the application of a spatial filter, an approach first proposed by

Leonard (1974). Let us consider a conservative law of the form

∂u

∂t
+∇ · F (u) = 0 (C.1)

for some non-linear flux function F (u). Let u be the filtered solution, that is

u (~x, t) =

∫
u(~x′, t)G(∆, ~x, ~x′) d~x′ (C.2)

where G(∆, ~x, ~x′) is the filter kernel which defines the numerical method. It has a

characteristic length ∆ (also known as filter width) which provides the cut-off between

large eddies of size larger than ∆, and subgrid eddies of size smaller than ∆. Filtering

the conservation equation (C.1) gives

∂u

∂t
+∇ · F (u) = 0 .

For filter kernels that commute with respect to time and space derivatives, and that

are normalized such that ∫
G(∆, ~x, ~x′) d~x′ = 1

we then have
∂u

∂t
+∇ · F (u) = 0
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and the closure problem arrises due to the fact that the filtered non-linear flux F (u)

cannot be expressed in terms of the filtered solution u that is sought through the

numerical procedure. It is then common to re-write the above as

∂u

∂t
+∇ · F (u) = ∇ · F (LES) (C.3)

where

F (LES) = F (u)− F (u) (C.4)

is the subgrid scale tensor that needs to be modeled. When F is linear as in the

continuity equation, F (LES) = 0 and no modeling is required: filtered and unfiltered

equations are equivalent.

Thus, the closure problem arises from the non-linearity of the governing equations,

and hence when solving the Navier-Stokes equations F (LES) in (C.3) contains the

terms related to the inviscid fluxes (the viscous fluxes being linear). In incompressible

flow, the subgrid scale tensor for the momentum equations is

F
(LES)
ij = −ρ (uiuj − ui uj) .

At this point it is important to mention that the constraint that the filter kernel G

must commute with respect to time and space derivatives is unrealistic for bounded

domains for which the cut-off length ∆ must decrease as the boundary of the domain is

approached. When a non-uniform grid is used (as is often the case), non-homogeneous

filters have to be used to mathematically represent the LES approach. Several authors

have risen the question of whether a theoretical framework of LES on uniform grids

can at all be extended to non-uniform grids. The reader is referred to Ghosal (1999)

and Sagaut (2007) for more details concerning this problem and possible solutions.

C.2 Sources of Error

Insight into the limitations of explicit LES models can be gained by following the

procedure described by Sagaut (2007). We look at the error in the numerical solution

in any arbitrary norm, e(hr, η) = ||u − uh||, as resulting from three sources of errors

e(hr, η) = eΠ(hr, η) + eh(hr, η) + er(hr, η) . (C.5)
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Any error is a function of both the resolution (represented by the measure hr of the

resolution of the numerical method) and of the scales that are not resolved (repre-

sented by the Kolmogorov scale η).

A first source of error is due to the use of a finite number of degrees of freedom to

approximate the exact continuous solution; it is denoted eΠ and is called projection

error. No discrete approximation can reduce this error to zero. A second source

is the numerical error eh which results from the approximation of time and space

derivatives using numerical schemes; by consistency, this error tends to vanish as hr

tends to zero. The third source of error is the resolution error er which accounts for

the fact that not all relevant scales are resolved in an LES; in a DNS, hr ≈ η and

er vanishes. The explicit LES approach aims at reducing the resolution error er by

employing a subgrid-scale (SGS) model to account for the unresolved scales.

C.3 Explicit Subgrid-Scale Models

The LES approach was first introduced in the 1960s by the meteorologist Smagorinsky

(1963) who proposed an eddy viscosity subgrid-scale model which is still widely used

today due to its simplicity and success for industrial applications. As in all eddy-

viscosity models whether for LES or RANS, Smagorinsky’s model is based on the

idea that the main effect of turbulence is to drain energy from the large scales, that

is to drive the kinetic energy cascade. Through the use of Boussinesq’s assumption,

the subgrid scale tensor is then modeled as

F (LES) = 2 νt S

is employed, where νt is the eddy viscosity that needs to be modeled, and

S =
[
∇u+ (∇u)T

]
/2

is the rate of strain tensor of the resolved scales. The Smagorinsky model computes

the eddy viscosity as

νt = (CS ∆)2 |S|

were |S| =
√
SijSij , ∆ is the grid spacing or filter width, and CS is the Smagorinsky

constant whose value is close to 0.2 in isotropic turbulence.

The main deficiencies of the Smagorinsky model are that (1) it requires the input

of a model constant CS, (2) it yields incorrect asymptotic behavior near walls and in
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laminar flow, (3) does not allow for energy backscatter from the subgrid scales to the

resolved eddies, and (4) it assumes that the principal axes of the subgrid-scale tensor

are aligned with those of the resolved strain rate tensor.

Issue (2) is easily resolved by the used of e.g. a van Driest damping function as

proposed by Lilly (1967) such that

C2
S = C2

S0

[
1− exp

(
−y+/A+

)]2

where CS0 is the undamped Smagorinsky constant, y+ = y uτ/ν is the distance to the

wall in wall units, and A+ characterizes the damping magnitude with 25 a commonly

used value.

The dynamic model originally proposed by Germano et al. (1991) addresses issue

(1) by determining the model constant dynamically during the simulation through

the assumption of scale invariance. It is thus a self-similarity model, and requires

the cut-off level to be within the inertial sub-range as explained previously. The

idea is to compute the Smagorinsky coefficient “by imposing that two different large

eddy representations of a turbulent flow: the computed large eddy simulation and a

tested large eddy simulation at a higher level, are equivalent from a statistical point

of view” (Germano et al., 1991). The computed fields are filtered using a test filter

whose width is larger than the mesh filter width ∆, commonly set to 2∆. It is then

assumed that the model constant is the same for the original filter and for the test

filter. This approach also addresses issue (3) since it can result in negative values of

C2
S and hence allows backscatter through a negative νt.

Another significant improvement in subgrid-scale modeling is provided by the

scale-similarity model proposed by Bardina et al. (1980). The approach relies on the

assumption that “the important interactions between the resolved and unresolved

scales involve the smallest eddies of the former and the largest eddies of the latter,

i.e. eddies that are a little larger or a little smaller than the length scale, ∆, associ-

ated with the filter”. Thus, the entire structure of the field at the subgrid-scales is

assumed to be similar to that of the large scales. Combining this approach with the

Smagorinsky model yields a mixed model, and it resolves the problem of backscatter

(issue (3)) while not assuming alignment between subgrid-scale stress and resolved

strain rate (issue (4)).

Much effort has been put for a number of years on deriving better subgrid-scale

models in particular in the 1990s (see for instance reviews by Lesieur and Métais,

1996; Meneveau and Katz, 2000), with dynamic mixed models providing results that
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are closest to DNS data. The conclusion of Spalart (2000) that “there is little to gain

by refining the SGS [subrgrid scale] models” is shared by many authors (e.g. Fureby

et al., 1997).

All the models discussed here belong to the class of functional subgrid-scale mod-

els: they aim at reproducing the effects of the unresolved scales on the resolved field.

Another approach is that of structural models which aim at directly predicting the

subgrid scales. The interested reader is referred to Domaradzki and Adams (2002)

and to Sagaut (2005) for a review of this other class of models.

C.4 Physical Justifications of ILES

Boris (2007) gives arguments as why the MILES approach (and other ILES) should

work, and details five considerations which can be summarized as follows.

• “As the wavelength decreases, the [Kolmogorov energy] spectrum drops off so

quickly that the shortest neglected scale lengths do not contain very much of

the energy of the flow”. Thus, most of the energy resides in eddies that can be

resolved with the computational power of today’s supercomputers.

• On the other hand, the energy decay at increasingly large wave number, k−5/3,

is “not too steep”, such that small scales “mix large-scale inhomogeneities as

fast as the large eddies can produce them”, and energy is quickly dissipated as

heat thus ensuring energy conservation. This was explained in detail in Section

A.3.

• Furthermore, “the turbulent kinetic energy being transferred by the inertial-

range cascade passes through all the intervening local scales to short wavelength

where it is eventually dissipated”; a consequence of this is that “virtually all of

the energy extraction from a given scale occurs as a result of interactions with

eddies less than an order of magnitude smaller”. Hence, “the small scales are

not very important dynamically because the cascade of energy from large scales

to short scales moves through the intervening scales”.

• “There are only few features of the flow that are important at scales as small as

ηK or even 10 times larger”, and hence the Kolmogorov scale is “relatively unim-

portant dynamically because the turbulence energy has already been dissipated

at larger wavelengths before it can reach ηK .”
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• Finally, nonlinear monotone fluid dynamic algorithms “properly connect the

flow at the smallest computed scales to the flow at the smaller unresolved scales”

and hence “the computed solution is expected to be reliable down to the small

resolved scales” in spite of these being of size similar to the grid resolution,

hence necessarily under-resolved and subject to Gibbs oscillations in the pres-

ence of sharp gradients. In particular, enforcing certain physical requirements

on convection algorithms (e.g. conservation property: total quantity of a con-

vected variable is unchanged by the convection algorithm when integrated over

the domain) “seem to sufficiently constrain the numerical solution that resolved

kinetic energy cascades off the grid into heat in a physically reasonable way.”

As a consequence, “the dissipation in the algorithm properly connects the large,

energy-containing scales to the unresolved subgrid scales of motion”, while we

can rely on such methods “to compute the large scales correctly without sig-

nificant contamination from numerical errors at the grid scale and from the

segment of the physical inertial range that has been truncated.”

The first three considerations are linked to the energy cascade in the inertial

range as described by Kolmogorov’s theory (see Appendix A), and thus underline the

importance that the cut-off level of LES be in this range. If the cut-off is close or

above kK , then we are performing a DNS. On the other hand, if the cut-off is at a wave

number smaller than the inertial range, nothing warranties that the energy contained

in the unresolved scales is small enough and that all energy-producing eddies are

accounted for.

The last consideration is very important, since one cannot expect to accurately re-

solve features that are, by the grid coarseness, necessarily under-resolved, but one can

reasonably demand that resolved features be simulated accurately. In other words,

the algorithm is to “do minimal damage to the larger wavelengths while still incor-

porating, at least qualitatively, most of the local and global effects of the unresolved

turbulence one expects of a Large Eddy Simulation” (Boris, 1990) which is precisely

what ILES certain methods have been found to do.

C.5 Mathematical Justifications of ILES

The idea of Modified Equation Analysis (MEA) is to consider the form that the

governing partial differential equations (PDEs) take when the volume of integration

is finite, as opposed to the assumption of an infinitely small volume that is used in the
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derivation of the PDEs from the control volume equations. The finite volume PDEs

correspond to the governing equations plus a term that is a function of the volume

size and time step. These are referred to as finite-volume equations and the additional

terms are called finite-volume corrections (Grinstein et al., 2007c). Once the finite-

volume equations have been derived, MEA can be used to generate the PDEs “whose

[exact] solution closely approximates the solution of a numerical algorithm” (see also

Margolin and Rider, 2007; Fureby and Grinstein, 1999, 2002; Rider and Margolin,

2003).

In the case of the Navier-Stokes equations, the finite-scale corrections can be

written as the divergence of a symmetric tensor which can be viewed as a subgrid-

scale tensor that belongs to the class of similarity models (Grinstein et al., 2007c).

As mentioned previously, this type of models have been successfully used to predict

the dynamics of turbulent flows.

Thus, an important feature that a numerical algorithm must have in order to

be suited for ILES is that a self-similar term must be present in the MEA; this term

directly results from the use of a finite-volume representation (Grinstein et al., 2007c).

Another important feature is that sufficient dissipation is needed to regularize the

solution similarly to how a subgrid-scale model does it. The presence of a minimum

amount of dissipation ensures that the solution is physically plausible, and is referred

to as the entropy condition.

Only monotone algorithms have been mathematically proved to function as im-

plicit subgrid-scales models, but it remains unclear whether monotonicity is an abso-

lute requirement for an ILES algorithm, or whether a weaker property would suf-

fice (Grinstein, 2007). The ILES approach was originally developed with finite-

volume methods, and the unresolved scales were accounted through the use of a

non-oscillatory finite-volume method (NFV), such as a total variation diminishing

(TVD) scheme.

Mathematically, if the solution u
(n+1)
j at point j is obtained from the solution u(n)

at the previous step through a relation of the form

u
(n+1)
j = H

(
u

(n)
j−l, ... , u

(n)
j , ... , u

(n)
j+r

)
,

the scheme is called monotone when ∂H/∂ui ≥ 0 for all points i = j − l, ..., j + r. A

monotone numerical algorithm does not lead to un-physical oscillations (Gibbs phe-

nomenon) in the numerical solution which can appear due to the finite resolution.

The appearance of this type of oscillations is a result of the finite resolution. The
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term monotonicity preserving is used to indicate that new oscillations are not cre-

ated near propagating discontinuities that have a monotone initial condition. Note

that all monotone algorithms are TVD, and that all TVD schemes are monotonicity

preserving.

The total variation of a continuous function u is

TV (u) =

∫ ∣∣∣∣
∂u

∂x

∣∣∣∣ dx

and is a measure of how much the function fluctuates with x. For a discontinuous

function, the total variation at a given step n is given by

TV (u(n)) =
∑

j

∣∣∣u(n)
j+1 − u(n)

j

∣∣∣ .

A numerical algorithm is called total variation diminishing (TVD) if the total

variation of the solution at step n+1, TV (u(n+1)), is not larger than the total variation

TV (u(n)) at the previous step, that is

TV (u(n+1)) ≤ TV (u(n)) .

This is an important property of a numerical scheme since, as Lax (1973) showed,

the total variation of any physical (entropy satisfying) solution is a non-increasing

function of time, that is d [TV (u)]/dt ≤ 0. Boris and Book (1973); Sweby (1985)

showed that high-order TVD schemes can be derived by using a flux limiter approach

that reduces the order of the scheme near discontinuities which are necessarily under-

resolved.

Other classes schemes have been successfully used in ILES (for instance the one

of the present work), but a strict mathematical proof of their suitability is often

impossible.
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